Home
Class 12
MATHS
The value of int(-(pi)/(2))^(pi/2)(x^(2)...

The value of `int_(-(pi)/(2))^(pi/2)(x^(2)cosx)/(1+e^(x))dx` is equal to

A

`(pi^(2))/(4) - 2`

B

`(pi^(2))/(4) +2`

C

`pi^(2) - e^(pi//2)`

D

`pi^(2)+e^(pi//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx, \] we will use the property of definite integrals and a substitution. ### Step 1: Substitute \( x \) with \( -x \) We first consider the integral with the substitution \( x \to -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(-x)^2 \cos(-x)}{1 + e^{-x}} \, (-dx). \] Since \( (-x)^2 = x^2 \) and \( \cos(-x) = \cos x \), we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + \frac{1}{e^x}} \, dx. \] This simplifies to: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx. \] ### Step 2: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} \, dx \) (original) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x \cdot e^x}{e^x + 1} \, dx \) (after substitution) Now, let's add these two equations: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + e^x} + \frac{x^2 \cos x \cdot e^x}{e^x + 1} \right) \, dx. \] ### Step 3: Simplify the integrand The integrand can be simplified: \[ \frac{x^2 \cos x}{1 + e^x} + \frac{x^2 \cos x \cdot e^x}{e^x + 1} = x^2 \cos x \left( \frac{1 + e^x}{1 + e^x} \right) = x^2 \cos x. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] ### Step 4: Calculate the integral Now we need to evaluate: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] Using integration by parts, let: - \( u = x^2 \) and \( dv = \cos x \, dx \) - Then \( du = 2x \, dx \) and \( v = \sin x \) Applying integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int x^2 \cos x \, dx = x^2 \sin x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int \sin x \cdot 2x \, dx. \] Evaluating \( x^2 \sin x \) at the limits: \[ \left( \frac{\pi^2}{4} \cdot 1 - \left(-\frac{\pi^2}{4} \cdot (-1)\right) \right) = \frac{\pi^2}{4} + \frac{\pi^2}{4} = \frac{\pi^2}{2}. \] Now we need to compute \( -2 \int x \sin x \, dx \). ### Step 5: Another integration by parts Let \( u = x \) and \( dv = \sin x \, dx \): - Then \( du = dx \) and \( v = -\cos x \) Thus, \[ \int x \sin x \, dx = -x \cos x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int \cos x \, dx. \] Evaluating \( -x \cos x \) at the limits gives: \[ -\left( \frac{\pi}{2} \cdot 0 - \left(-\frac{\pi}{2} \cdot 0\right)\right) = 0, \] and \( \int \cos x \, dx = \sin x \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 1 - (-1) = 2 \). Thus, \[ \int x \sin x \, dx = 0 + 2 = 2. \] ### Step 6: Putting it all together Now we can substitute back: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx = \frac{\pi^2}{2} - 2(2) = \frac{\pi^2}{2} - 4. \] Thus, \[ 2I = \frac{\pi^2}{2} - 4 \implies I = \frac{\pi^2}{4} - 2. \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi^2}{4} - 2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 3 Part - II|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - IV|9 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x)) dx is

int_(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

The value of int_(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

The value of int_(-(pi)/(2))^((pi)/(2))[cot^(-1)x]dx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 3 Part - I
  1. If alpha = int(0)^(1)e^(9x+3tan^(-1)x)) ((12+9x^(2))/(1+x^(2)))dx wher...

    Text Solution

    |

  2. Let f: RvecR be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  3. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^4x-3tan^2x for all x in (-pi/2,...

    Text Solution

    |

  4. Let f'(x) = (192x^(2))/(2+sin^(4)pix) for all x in R with f(1/2) = 0. ...

    Text Solution

    |

  5. The option(s) with the values of a and L that satisfy the following eq...

    Text Solution

    |

  6. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  7. Let F : R rarr R be a thrice differentiable function, Supose that F(...

    Text Solution

    |

  8. Let F(x) = int(x)^(x^(2)+(pi)/(6))2cos^(2)t dt for all x in R and f: [...

    Text Solution

    |

  9. The total number of distinct x in (0,1] for which int(0)^(x)(t^(2))/...

    Text Solution

    |

  10. The value of int(-(pi)/(2))^(pi/2)(x^(2)cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  11. Area of region {(x,y) in R^(2): y ge sqrt(|x+3|,)5y le x + 9 le 15}

    Text Solution

    |

  12. Let f(x) = lim(nrarroo) ((n^(n)(x+n)(x+n/2)"......."(x+n/n))/(n!( x^(...

    Text Solution

    |

  13. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |

  14. Let f : R rarr R be a defferentiable function such that f(0) = 0 , f(p...

    Text Solution

    |

  15. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: I<(49)/(50) ...

    Text Solution

    |

  16. If the line x = alpha divides the area of region R = {(x,y) in R^(2) :...

    Text Solution

    |

  17. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : g^(prime)(pi/2)...

    Text Solution

    |

  18. For each positive integer n, let y(n) = 1/n ((n+1)(n+2) "……"(n+n))^...

    Text Solution

    |

  19. A farmer F1 has a land in the shape of a triangle with vertices at ...

    Text Solution

    |

  20. The value of the intetgral int(0)^(1//2)(1+sqrt(3))/(((x+1)^(2)(1-x)^...

    Text Solution

    |