Home
Class 12
MATHS
Evaluate int(0)^(pi)sqrt((cosx+cos2x+c...

Evaluate
`int_(0)^(pi)sqrt((cosx+cos2x+cos3x)^(2)+(sinx+sin2x+sin3x)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\pi} \sqrt{(\cos x + \cos 2x + \cos 3x)^2 + (\sin x + \sin 2x + \sin 3x)^2} \, dx, \] we can simplify the expression inside the square root. ### Step 1: Simplifying the Cosine Terms First, we simplify \(\cos x + \cos 2x + \cos 3x\). We can group \(\cos x\) and \(\cos 3x\): \[ \cos x + \cos 3x = 2 \cos\left(\frac{x + 3x}{2}\right) \cos\left(\frac{3x - x}{2}\right) = 2 \cos(2x) \cos(x). \] Thus, we have: \[ \cos x + \cos 2x + \cos 3x = 2 \cos(2x) \cos(x) + \cos(2x) = \cos(2x)(2 \cos(x) + 1). \] ### Step 2: Simplifying the Sine Terms Now, we simplify \(\sin x + \sin 2x + \sin 3x\): \[ \sin x + \sin 3x = 2 \sin\left(\frac{x + 3x}{2}\right) \cos\left(\frac{3x - x}{2}\right) = 2 \sin(2x) \cos(x). \] Thus, we have: \[ \sin x + \sin 2x + \sin 3x = 2 \sin(2x) \cos(x) + \sin(2x) = \sin(2x)(2 \cos(x) + 1). \] ### Step 3: Substituting Back into the Integral Now substituting these back into the integral: \[ I = \int_{0}^{\pi} \sqrt{(\cos(2x)(2 \cos(x) + 1))^2 + (\sin(2x)(2 \cos(x) + 1))^2} \, dx. \] Factoring out \((2 \cos(x) + 1)^2\): \[ I = \int_{0}^{\pi} |2 \cos(x) + 1| \sqrt{\cos^2(2x) + \sin^2(2x)} \, dx. \] Since \(\sqrt{\cos^2(2x) + \sin^2(2x)} = 1\), we have: \[ I = \int_{0}^{\pi} |2 \cos(x) + 1| \, dx. \] ### Step 4: Finding the Points of Change Next, we need to determine where \(2 \cos(x) + 1 = 0\): \[ 2 \cos(x) + 1 = 0 \implies \cos(x) = -\frac{1}{2}. \] This occurs at \(x = \frac{2\pi}{3}\) and \(x = \frac{4\pi}{3}\) (but only \(\frac{2\pi}{3}\) is in the interval \([0, \pi]\)). ### Step 5: Splitting the Integral We split the integral at \(x = \frac{2\pi}{3}\): \[ I = \int_{0}^{\frac{2\pi}{3}} (2 \cos(x) + 1) \, dx + \int_{\frac{2\pi}{3}}^{\pi} -(2 \cos(x) + 1) \, dx. \] ### Step 6: Evaluating the Integrals 1. **First Integral**: \[ \int_{0}^{\frac{2\pi}{3}} (2 \cos(x) + 1) \, dx = \left[2 \sin(x) + x\right]_{0}^{\frac{2\pi}{3}} = 2 \sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} - (0) = 2 \cdot \frac{\sqrt{3}}{2} + \frac{2\pi}{3} = \sqrt{3} + \frac{2\pi}{3}. \] 2. **Second Integral**: \[ \int_{\frac{2\pi}{3}}^{\pi} -(2 \cos(x) + 1) \, dx = -\left[2 \sin(x) + x\right]_{\frac{2\pi}{3}}^{\pi} = -\left(2 \sin(\pi) + \pi - (2 \sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3})\right) = -\left(0 + \pi - (\sqrt{3} + \frac{2\pi}{3})\right). \] This simplifies to: \[ -\left(\pi - \sqrt{3} - \frac{2\pi}{3}\right) = -\left(\frac{3\pi}{3} - \frac{2\pi}{3} - \sqrt{3}\right) = -\left(\frac{\pi}{3} - \sqrt{3}\right). \] ### Step 7: Combining the Results Combining both integrals gives: \[ I = \left(\sqrt{3} + \frac{2\pi}{3}\right) + \left(-\frac{\pi}{3} + \sqrt{3}\right) = 2\sqrt{3} + \frac{2\pi}{3} - \frac{\pi}{3} = 2\sqrt{3} + \frac{\pi}{3}. \] ### Final Answer Thus, the final answer is: \[ I = 2\sqrt{3} + \frac{\pi}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 3 Part - II|25 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)sqrt((cos x+cos2x+cos3x)^(2)+(sin x+sin2x+sin3x)^(2))dx is equal to ((pi)/(k)+w), where k and w are positive integers,find the value of (k^(2)+w^(2))

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate: int_(0)^((pi)/(4))(cos^(2)x)/(cos^(2)x+4sin^(2)x)dx

Evaluate :int_(0)^( pi/4)cos2x sqrt(4-sin2x)dx

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

int_(0)^( pi)((sin x+cos x)^(2))/(sqrt(1+sin2x))dx

Evaluate int_(-pi/2)^(pi/2)(sin2x)/(1+cos^3x)dx

Evaluate: int_(0)^( pi/2)(1)/(cos^(3)x sqrt(2sin2x))dx

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -High Level Problem
  1. Find the integral value of a for which int(0)^(pi//2)(sinx+acosx)^(3) ...

    Text Solution

    |

  2. Evaluate int(0)^(pi)sqrt((cosx+cos2x+cos3x)^(2)+(sinx+sin2x+sin3x)^(...

    Text Solution

    |

  3. Let alpha & beta be distinct positive roots of the equation tanx = 2x,...

    Text Solution

    |

  4. Evaluate : lim(ararr(pi/2)^(-)) int(0)^(a)(cosx)ln(cosx)dx

    Text Solution

    |

  5. Find the value of a(0 lt a lt 1) for which the following definite inte...

    Text Solution

    |

  6. Find the Lim(nrarroo) ((""^(3n)C(n))/(""^(2n)C(n)))^(1/n) Where ""^(...

    Text Solution

    |

  7. int0^oof(a/x+x/a)*(lnx)/x d x=lna*int(a/x+x/a)*(dx)/x

    Text Solution

    |

  8. Evaluate Lim(n->oo)n^2 int(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx

    Text Solution

    |

  9. Let sequence (a(n)) be defined as a(1) = pi/4, a(n) = int(0)^(1//...

    Text Solution

    |

  10. Find f(x) if it satisfies the relation f(x) = e^(x) + int(0)^(1) (x...

    Text Solution

    |

  11. Evaluate : int(-1//sqrt(3))^(1//sqrt(3))(x^(4))/(1-x^(4)) cos^(-1) ((2...

    Text Solution

    |

  12. Evaluate int(0)^(1)(1)/((5+2x-2x^(2))(1+e^((2-4x)))dx

    Text Solution

    |

  13. Prove that for any positive integer k , (sin2kx)/(sinx) = 2 [cosx+co...

    Text Solution

    |

  14. If n gt 1. Evaluate int(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

    Text Solution

    |

  15. Let f(x) be a continuous function AAx in R , except at x=0, such that...

    Text Solution

    |

  16. Given that lim(nrarroo) sum(r=1)^(n) (log(e)(n^(2)+r^(2))-2log(e)n)/n ...

    Text Solution

    |

  17. For a natural the following questions : Now answer the following que...

    Text Solution

    |

  18. Given that lim(x to oo)(int(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1...

    Text Solution

    |

  19. Draw a graph of the function f(x) = cos^(-1) (4x^(3)-3x), x in [-1,1] ...

    Text Solution

    |

  20. Consider a square with vertices at (1,1),(-1,1),(-1,-1),a n d(1,-1)dot...

    Text Solution

    |