Home
Class 12
MATHS
Evaluate: int[ln(lnx)+1/(lnx)^(2)]dx...

Evaluate: `int[ln(lnx)+1/(lnx)^(2)]`dx

Text Solution

Verified by Experts

Let I `=int[ln(lnx)+1/(lnx)^(2)]dx ("put" x=e^(t) rArr dx=e^(t)dt)`
`therefore I=inte^(t)(lnt+1/t^(2))dt inte^(t)(lnt-1/t+1/t+1/t^(2))=dt`
`e^(t)(lnt-1/t)+C=x[ln(lnx)-1/(lnx)]+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise EXERCISE -1 SUBJECTIVE QUESTIONS|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SUBJECTIVE QUESTIONS|14 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(log x)/((1+log x)^(2))dx

Evaluate: int log(x+1)dx

Evaluate: int log(x+1)dx

Evaluate: int_(1)^(2)(log x)/(x^(2))dx

Evaluate: int_(1)^(2)(log x)/(x^(2))dx

Evaluate: int((x+1)/(x))(x+log x)^(2)dx

Evaluate: int(log(log x)+(1)/((log x)^(2)))dx

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

Evaluate int_(5)^(7)ln(x-3)^(2)dx+2int_(0)^(1)ln(x+4)^(2)dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx