Home
Class 12
MATHS
Evaluate : int(3cosx+2)/(sinx+2cosx+3) d...

Evaluate : `int(3cosx+2)/(sinx+2cosx+3)` dx

Text Solution

Verified by Experts

We have,
`I=int(3cosx+2)/(sinx+2cosx+3)`dx
Let `3cosx+2=lambda(sinx+2cosx+3) + mu(cosx-2sinx)+v`
Comparing the coefficients of sinx, cosx and constant term on both sides, we get
`lambda-2mu=0, 2lambda+mu=3, 3lambda+v=2 rArr lambda=6/5, mu=3/5` and `v=-8/5`
`therefore i=int(lambda(sinx+2cosx+3)+mu(cosx-2sinx)+v)/(sinx+2cosx+3)`dx ltrgt `rArr I=lambda intdx + mu int(cosx-2sinx)/(sinx+2cosx+3)dx+v int1/(sinx+2cosx+3)dx`
`rArr I=lambda+mulog|sinx+2cosx+3|+vI_(1)`
Where `I_(1)=int1/(sinx+2cosx+3)dx`
Putting, `sinx=(2tanx//2)/(1+tan^(2)x//2), cosx=(1-tan^(2)x//2)/(1+tan^(2)x//2)`, we get
`I_(1)=int1/((2tanx//2)/(1+tan^(2)x//2)+(2(1-tan^(2)x//2))/(1+tan^(2)x//2)+3` dx `=int(1+tan^(2)x//2)/(2tanx//2+2-2tan^(2)x/2+3(1+tan^(2)x//2))`dx
`int(sec^(2)x//2)/(tan^(2)x//2+2tanx//2+5)`dx
Putting `tanx/2=t` and `1/2sec^(2)x/2=dt` or `sec^(2)x/2dx=2dt`, we get
`I_(1)= int(2dt)/(t^(2)+2t+5)= 2int(dt)/((t+1)^(2)+2^(2))=2/2tan^(-1)(t+1)/(2)= tan^(-1)(tanx/2+1)/(2)`
Hence, `I=lambdax + mulog |sinx+2cosx+3|+v tan^(-1)(tanx/2+1)/(2)+C`
Where `lambda=6/5, mu=3/5` and `v=-8/5`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise EXERCISE -1 SUBJECTIVE QUESTIONS|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SUBJECTIVE QUESTIONS|14 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

int(cosx)/(sinx+cosx)dx=

Evaluate: int1/(cosx(sinx+2cosx))\ dx

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)\ dx

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)\ dx

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)dx

Evaluate: int(5sinx+6)/(sinx+2cosx+3)\ dx

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

Evaluate: int(3+2cosx)/(2+3cosx)^2dx

Evaluate: int(3+2cosx+4sinx)/(2sinx+cosx+3)\ dx