Home
Class 12
MATHS
The valueof intf(x)g^(.)(x)-f^(.)(x)g(x)...

The valueof `intf(x)g^(.)(x)-f^(.)(x)g(x)+C`

A

`(f(x)/g^(')x)+C`

B

`f^(')(x)g(x)-f(x)g^(')(x)+C`

C

`f(x)g^(')(x)-f^(')(x)g(x)+C`

D

`f(x)g^(')(x)+f^(')(x)g^(')(x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If intg(x)dx=g(x) , then the value of the integral intf(x)g(x){f(x)+2f'(x)}dx is

If (x-1) is a factor of polynomial f(x) but not of g(x) ,then it must be a factor of f(x)g(x)(b)-f(x)+g(x)f(x)-g(x)(d){f(x)+g(x)}g(x)

let f(x)=sqrt(x) and g(x)=x be function defined over the set of non negative real numbers. find (f+g)(x),(f-g)(x),(fg)(x) and (f/g)(x)

prove the following int e^(g(x)){f(x)*g'(x)+f'(x)}dx=e^(g(x))f(x)+c

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

Let f(x) and g(x) be differentiable function in (a,b), continuous at a and b, and g(x)!=0 in [a,b]. Then prove that (g(a)f(b)-f(a)g(b))/(g(c)f'(c)-f(c)g'(c))=((b-a)g(a)g(b))/((g(c))^(2))

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

If intf(x)dx=g(x), then : intf^(-1)(x)dx=