Home
Class 12
MATHS
If f(x) = int(sinx-sin2x)/(x^(3))dx, whe...

If `f(x) = int(sinx-sin2x)/(x^(3))`dx, where `xne0`, then `Limit_(xto0) f^(')(x)` has the value

Text Solution

Verified by Experts

1
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise COMPREHENSION|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-13|10 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int((2sin x-sin2x)/(x^(3))dx);x!=0 then lim_(x rarr0)f'(x) is: (A) 0(B)oo(C)-1 (D) 1

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

If : f((x^(2)+1)/(x))=(x^(4)+1)/(x^(2))," where "xne0," then: "f'(3)=

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by