Home
Class 12
MATHS
Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n ...

Let `g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0.` then the value of `8g(pi/2)` is __________

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise COMPREHENSION|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-13|10 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=int(1+2cos x)/((cos x+2)^(2))dx and g(0)=0. then the value of 8g((pi)/(2)) is

int_(0)^(pi//2) (1+ 2 cos x)/((2+ cosx )^(2) )dx =

int_(0)^( pi/2)(cosx/(cosx+sinx))dx

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^( pi/2)(cosx)/(1+sin x)dx

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

Find the value of int_0^(2pi) |cosx|dx

8) int_0^(2pi)cosx dx

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is