Home
Class 12
MATHS
Let f(x)=inte^x(x-1)(x-2)dxdot Then f d...

Let `f(x)=inte^x(x-1)(x-2)dxdot` Then `f` decreases in the interval `(-oo,-2)` (b) `-2,-1)` `(1,2)` (d) `(2,+oo)`

A

`-(infty,2)`

B

`(-2,-1)`

C

(1,2)

D

`(2,+infty)`

Text Solution

Verified by Experts

C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART-II JEE MAIN|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise COMPREHENSION|1 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

Let f(x) =inte^x(x-1)(x-2)dx, then f(x) decrease in the interval

Let f(x)=inte^x(x-1)(x-2)dxdot Then f decreases in the interval (a)(-oo,-2) (b) -2,-1) (c)(1,2) (d) (2,+oo)

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

The function f(x)=(1)/(1+x^(2)) is decreasing in the interval (i)(-oo,-1)(ii)(-oo,0)(iii)(1,oo)(iv)(0,oo)

If the function f(x)=2x^(2)-kx+5 is increasing on [1,2], then k lies in the interval (a) (-oo,4)(b)(4,oo)(c)(-oo,8)(d)(8,oo)

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt, then f(x) increases in (0,2)(b) no value of x(0,oo)(d)(-oo,0)