Home
Class 12
MATHS
The integral int[2x^[12]+5x^9]/[x^5+x^3...

The integral `int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx` is equal to- (A) `x^10 / (2(x^5 + x^3 +1)^2) ` (B) `x^5/ (2(x^5 + x^3 +1)^2) ` (C) `-x^10 / (2(x^5 + x^3 +1)^2) ` (D) `- x^5 / (2(x^5 + x^3 +1)^2) `

A

`(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

B

`x^(5)/(2(x^(5)+x^(3)+1)^(2))+C`

C

`-x^(10)/(2(x^(5)+x^(3)+1)^(2))+C`

D

`-x^(5)/(x^(5)+x^(3)+1)^(2)+C`

Text Solution

Verified by Experts

1
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-3 Part I- JEE ADVANCED/ IIT-JEE PROBLEMS|8 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

int x ^ (5) (1 + 2x ^ (3)) ^ ((5) / (3)) dx

(2x + 3) / (2x + 5)-(x) / (x + 1) = (1) / (2x + 3), (x! = -1, x! =-(5) / (2) , x! =-(3) / (2))

(i) (x ^ (3) + 2x ^ (2) + 3x) -: 2x (ii) (10x-25) - :( 2x-5) (iii) (x (x + 1) (x + 2 ) (x + 3)) - :( x (x + 1))

int _ (- 1) ^ (1) (2x + 3) / (5x + 2) dx

int((2x^(12)+5x^(9))dx)/((x^(5)+x^(3)+1)^(3))

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Simplify : 7x + 3x(x-4) = ? A. 10x + 12 B. 10x - 12 C. 3x^(2) + 5x D. 3x^(2) - 5x