Home
Class 12
MATHS
Evaluate: int(sqrt(tanx))dx...

Evaluate: `int(sqrt(tanx))dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \sqrt{\tan x} \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \tan x \). Then, we know that: \[ \frac{dt}{dx} = \sec^2 x \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} \] Also, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART-II JEE MAIN|8 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(sqrt(tanx))/(sinx cosx)dx

Evaluate int(sqrt(tanx))/(sinx. cos x) dx

Evaluate int(sqrt(tanx)+sqrt(cotx))dx

Evaluate int(sqrt(tanx)+sqrt(cotx))dx .

int(sqrt(tanx))/(sin2x)dx=

int(sqrt(tanx))/(sin2x)dx=

Evaluate: int(sqrt(cotx)-sqrt(tanx))/(1+3sin2x)dx

Evaluate int(secx+tanx)^(2)dx

Evaluate: int1/(1-tanx)\ dx

Evaluate int (sec^2x+tanx )dx