Home
Class 12
MATHS
Deduce the reduction formula for I(n)=in...

Deduce the reduction formula for `I_(n)=int(dx)/(1+x^(4))^(n)` and Hence evaluate `I_(2)=int(x)/(1+x^(4))^(2)`.

Text Solution

Verified by Experts

`I_(n)=x/((4(n-1)(1+x^(4))^(n-1))+(4n-5)/(4(n-1))I_(n-1)`
`I_(2)=x/(4(1+x^(4)) + (1/(2sqrt(2))tan^(-1)(x-1/x)/sqrt(2) -1/(4sqrt(2))"ln"(x+1/x-sqrt(2))/(x+1/x+sqrt(2)))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

I=int(x)/(x^(4)-x^(2)+1)dx

obtain reducation formula for I_(n)=int sin^(4)dx Hence evaluate int sin^(4)xdx

If I=int x^(-11)(1+x^(4))^(-1/2)dx

(i) Evaluate int(2x+1)/(x(x-1)(x-4))dx

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

Integrating by parts, derive reduction formulas for calculating the following integrals : (a) I_(n) = int (dx)/( (x^(2) + a^(2) )^(n) ) ,

If I_(n)=int(x^(n))/(1+x^(2))dx, where n in N , then : I_(n+2)+I_(n)=

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n));n in N, then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_(n)

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then