Home
Class 12
MATHS
Find the value of the following inverse ...

Find the value of the following inverse trigonometric expression:
`cos^(-1)(1/(sqrt(2))("cos"(9pi)/10-"sin"(9pi)/10))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \cos^{-1}\left(\frac{1}{\sqrt{2}} \left( \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right) \right)\right) \), we can follow these steps: ### Step 1: Simplify the expression inside the inverse cosine We start with the expression: \[ y = \cos^{-1}\left(\frac{1}{\sqrt{2}} \left( \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right) \right)\right) \] We know that \( \frac{1}{\sqrt{2}} \) is equal to \( \cos\left(\frac{\pi}{4}\right) \) and \( \sin\left(\frac{\pi}{4}\right) \). ### Step 2: Rewrite the expression using cosine and sine Using the cosine of a difference formula: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] We can express \( \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right) \) in terms of cosine: \[ \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right) = \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{\pi}{4}\right) \sin\left(\frac{9\pi}{10}\right) \] This can be rewritten as: \[ \cos\left(\frac{9\pi}{10} + \frac{\pi}{4}\right) \] ### Step 3: Find the angle Now we need to compute: \[ \frac{9\pi}{10} + \frac{\pi}{4} = \frac{36\pi}{40} + \frac{10\pi}{40} = \frac{46\pi}{40} = \frac{23\pi}{20} \] Thus, we have: \[ y = \cos^{-1}\left(\frac{1}{\sqrt{2}} \cos\left(\frac{23\pi}{20}\right)\right) \] ### Step 4: Use the properties of inverse cosine The expression simplifies to: \[ y = \cos^{-1}\left(\cos\left(\frac{23\pi}{20}\right)\right) \] Since \( \frac{23\pi}{20} \) is greater than \( \pi \) but less than \( 2\pi \), we can use the property: \[ \cos^{-1}(\cos x) = 2\pi - x \quad \text{for } x \in ( \pi, 2\pi ) \] Thus: \[ y = 2\pi - \frac{23\pi}{20} \] ### Step 5: Calculate the final value Now, we find: \[ y = \frac{40\pi}{20} - \frac{23\pi}{20} = \frac{17\pi}{20} \] ### Final Answer The value of the expression is: \[ \frac{17\pi}{20} \]

To find the value of the expression \( \cos^{-1}\left(\frac{1}{\sqrt{2}} \left( \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right) \right)\right) \), we can follow these steps: ### Step 1: Simplify the expression inside the inverse cosine We start with the expression: \[ y = \cos^{-1}\left(\frac{1}{\sqrt{2}} \left( \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right) \right)\right) \] We know that \( \frac{1}{\sqrt{2}} \) is equal to \( \cos\left(\frac{\pi}{4}\right) \) and \( \sin\left(\frac{\pi}{4}\right) \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SCQ_TYPE|97 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following inverse trigonometric expression: cos^(-1)(cos 10)

Find the value of the following inverse trigonometric expression: sin^(-1)(sin 4)

Find the value of the following inverse trigonometric expression: cot^(-1)(cot(-10))

Evaluate the following inverse trigonometric expression: sin^(-1)("sin"(7pi)/6)

cos^(-1)((1)/(sqrt(2))(cos.(11pi)/(10)-sin.(pi)/(10))) is :

The value of cos^(-1){(1)/(sqrt(2))(cos((9 pi)/(10))-sin((9 pi)/(10)))}

Find the value of following expression: [(1-cos(pi)/(10)+i sin(pi)/(10))/(1-cos(pi)/(10)-i sin(pi)/(10))]^(10)

Find the value of sin^(-1)(cos(pi/5))

The value of expression E=(1)/(sin10^(@)-)(sqrt(3))/(cos10^(@)=)

Find the principal value of each of the following: sin^(-1)((sqrt(3)+1)/(2sqrt(2)))( (ii) sin^(-1)((cos(3 pi))/(4))( iii) sin^(-1)((tan(5 pi))/(4))

RESONANCE-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the value of the following inverse trigonometric expression: ta...

    Text Solution

    |

  2. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  3. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  4. Find the value of the following expression: cot(tan^(-1)a+cot^(-1)a)

    Text Solution

    |

  5. Find the value of the following expression: sin(sin^(-1)x+cos^(-1)x)...

    Text Solution

    |

  6. Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x.

    Text Solution

    |

  7. Evaluate the following expression: sin("cos"^(-1)3/5)

    Text Solution

    |

  8. Evaluate the following expression: tan("cos"^(-1)1/3)

    Text Solution

    |

  9. Evaluate the following expression: cosec"(sec"^(-1)(sqrt(41))/4)

    Text Solution

    |

  10. Evaluate the following expression: tan("cosec"^(-1)65/63)

    Text Solution

    |

  11. Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

    Text Solution

    |

  12. Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

    Text Solution

    |

  13. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  14. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  15. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  16. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  17. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  18. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  19. Consider f(x)=tan^(-1)(2/x),g(x)=sin^(-1)(2/(sqrt(4+x^(2)))) and h(x)=...

    Text Solution

    |

  20. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |