Home
Class 12
MATHS
Express in terms of : "tan"^(-1)(2x)/(1-...

Express in terms of : `"tan"^(-1)(2x)/(1-x^(2)` to `tan^(-1)x` for `xgt1`

Text Solution

AI Generated Solution

The correct Answer is:
To express \(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\) in terms of \(\tan^{-1}(x)\) for \(x > 1\), we can follow these steps: ### Step 1: Use the double angle formula for tangent We know that: \[ \tan(2y) = \frac{2\tan(y)}{1 - \tan^2(y)} \] This means: \[ \tan^{-1}\left(\frac{2\tan(y)}{1 - \tan^2(y)}\right) = 2y \] ### Step 2: Substitute \(x\) in terms of \(\tan(y)\) Let \(x = \tan(y)\). Then, we can write: \[ \tan^{-1}\left(\frac{2\tan(y)}{1 - \tan^2(y)}\right) = 2y \] ### Step 3: Express \(y\) in terms of \(x\) Since \(x = \tan(y)\), we have: \[ y = \tan^{-1}(x) \] ### Step 4: Substitute \(y\) back into the equation Now substituting \(y\) back, we get: \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}(x) \] ### Step 5: Adjust for the range \(x > 1\) Since \(x > 1\), we need to adjust our result: \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}(x) - \pi \] ### Final Result Thus, we can express: \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}(x) - \pi \quad \text{for } x > 1 \] ---

To express \(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\) in terms of \(\tan^{-1}(x)\) for \(x > 1\), we can follow these steps: ### Step 1: Use the double angle formula for tangent We know that: \[ \tan(2y) = \frac{2\tan(y)}{1 - \tan^2(y)} \] This means: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SCQ_TYPE|97 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

Define: cos^(-1)((1-x^(2))/(1+x^(2))) in terms of tan^(-1)x

Solve for x:tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x,x>0

Solve for x:tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x,x>0

Solve for x; tan^(-1)(1/2)+tan^(-1)2=tan^(-1)x

If x >1 , then write the value of sin^(-1)((2x)/(1+x^2)) in terms of tan^(-1)x

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

[ If xgt0 then which of the following is true 1) tan^(-1)xgt(x)/(1+x^(2)), 2) tan^(-1)x=(x)/(1+x^(2)) 3) tan^(-1)xlt(x)/(1+x^(2)), 4) tan^(-1)x!=(x)/(1+x^(2))]

RESONANCE-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  2. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  3. Consider f(x)=tan^(-1)(2/x),g(x)=sin^(-1)(2/(sqrt(4+x^(2)))) and h(x)=...

    Text Solution

    |

  4. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  5. Prove each of the following relation: cos^(-1)x=sec^(-1)1/x=pi-sin^(...

    Text Solution

    |

  6. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  7. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  8. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  9. Simplity tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)(1-y^(2))/(1+y^(2)...

    Text Solution

    |

  10. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  11. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  13. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  14. Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

    Text Solution

    |

  15. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  16. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  17. Prove that ta n^-1 1/3 + ta n ^-1 1/5 + ta n ^-1 1/7 + ta n ^-1 1/8 =...

    Text Solution

    |

  18. Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+...

    Text Solution

    |

  19. Find the sum of the series :(tan^- 1)1/3+(tan^- 1)2/9+....+(tan^- 1)(2...

    Text Solution

    |

  20. The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)...

    Text Solution

    |