Home
Class 12
MATHS
Simplity tan{1/2sin^(-1)((2x)/(1+x^(2)))...

Simplity `tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)(1-y^(2))/(1+y^(2))}`, if `xgtygt1`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \tan\left(\frac{1}{2}\sin^{-1}\left(\frac{2x}{1+x^2}\right) + \frac{1}{2}\cos^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right) \), given that \( x > y > 1 \), we can follow these steps: ### Step 1: Use the identities for inverse trigonometric functions We start by recognizing that: - \( x = \tan(\theta) \) implies \( \theta = \tan^{-1}(x) \) - \( y = \tan(\phi) \) implies \( \phi = \tan^{-1}(y) \) ### Step 2: Substitute \( x \) and \( y \) Substituting \( x = \tan(\theta) \) and \( y = \tan(\phi) \) into the expression gives: \[ \tan\left(\frac{1}{2}\sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) + \frac{1}{2}\cos^{-1}\left(\frac{1-\tan^2(\phi)}{1+\tan^2(\phi)}\right)\right) \] ### Step 3: Simplify the inverse sine and cosine Using the double angle identities: - \( \sin(2\theta) = \frac{2\tan(\theta)}{1+\tan^2(\theta)} \) - \( \cos(2\phi) = \frac{1-\tan^2(\phi)}{1+\tan^2(\phi)} \) We can rewrite the expression as: \[ \tan\left(\frac{1}{2}\sin^{-1}(\sin(2\theta)) + \frac{1}{2}\cos^{-1}(\cos(2\phi))\right) \] ### Step 4: Apply the half-angle identities Now we can simplify further: \[ \tan\left(\theta + \phi\right) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan(\theta)\tan(\phi)} \] Substituting back \( \tan(\theta) = x \) and \( \tan(\phi) = y \): \[ \tan(\theta + \phi) = \frac{x + y}{1 - xy} \] ### Step 5: Final expression Thus, the simplified expression is: \[ \frac{x + y}{1 - xy} \] ### Summary of Steps 1. Recognize the relationships between \( x, y \) and angles \( \theta, \phi \). 2. Substitute \( x = \tan(\theta) \) and \( y = \tan(\phi) \). 3. Use the identities for sine and cosine to rewrite the expression. 4. Apply the tangent addition formula to combine the angles. 5. Substitute back to express in terms of \( x \) and \( y \).

To simplify the expression \( \tan\left(\frac{1}{2}\sin^{-1}\left(\frac{2x}{1+x^2}\right) + \frac{1}{2}\cos^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right) \), given that \( x > y > 1 \), we can follow these steps: ### Step 1: Use the identities for inverse trigonometric functions We start by recognizing that: - \( x = \tan(\theta) \) implies \( \theta = \tan^{-1}(x) \) - \( y = \tan(\phi) \) implies \( \phi = \tan^{-1}(y) \) ### Step 2: Substitute \( x \) and \( y \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SCQ_TYPE|97 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1) ((1-y^(2))/(1+ y^(2)))}

Prove that tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))}=(x+y)/(1-xy) , where |x| lt 1,y gt 0 and xy lt 1 .

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

Find the value of the following: tan((1)/(2))[sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-y^(2))/(1+y^(2)))],|x| 0 and xy<1

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

Find the value of: tan((1)/(2)[(sin^(-1)(2x))/(1+x^(2))+(cos^(-1)(1-y^(2)))/(1+y^(2))]),|x| 0 and xy,|x| 0

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

Prove that : tan(1/2){sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))}=(x+y)/(1-x y) , if |x| 0 and x y<1 .

RESONANCE-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  2. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  3. Consider f(x)=tan^(-1)(2/x),g(x)=sin^(-1)(2/(sqrt(4+x^(2)))) and h(x)=...

    Text Solution

    |

  4. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  5. Prove each of the following relation: cos^(-1)x=sec^(-1)1/x=pi-sin^(...

    Text Solution

    |

  6. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  7. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  8. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  9. Simplity tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)(1-y^(2))/(1+y^(2)...

    Text Solution

    |

  10. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  11. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  13. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  14. Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

    Text Solution

    |

  15. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  16. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  17. Prove that ta n^-1 1/3 + ta n ^-1 1/5 + ta n ^-1 1/7 + ta n ^-1 1/8 =...

    Text Solution

    |

  18. Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+...

    Text Solution

    |

  19. Find the sum of the series :(tan^- 1)1/3+(tan^- 1)2/9+....+(tan^- 1)(2...

    Text Solution

    |

  20. The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)...

    Text Solution

    |