Home
Class 12
MATHS
The function f(x)=[x]+1/2,x!inI is a/an ...

The function `f(x)=[x]+1/2,x!inI` is a/an (wher [.] denotes greatest integer function)

A

Even

B

odd

C

neither even nor odd

D

even as well as odd

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = [x] + \frac{1}{2} \) (where \([x]\) denotes the greatest integer function) is even, odd, or neither, we can follow these steps: ### Step 1: Understand the Function The function \( f(x) \) is defined as: - \( f(x) = [x] + \frac{1}{2} \) for \( x \notin \mathbb{Z} \) (i.e., \( x \) is not an integer). ### Step 2: Check for Evenness A function \( f(x) \) is even if \( f(-x) = f(x) \) for all \( x \). ### Step 3: Calculate \( f(-x) \) Let’s calculate \( f(-x) \): - If \( x \) is not an integer, then \( -x \) is also not an integer. - Therefore, \( f(-x) = [-x] + \frac{1}{2} \). ### Step 4: Relate \([-x]\) to \([x]\) The greatest integer function has the property that: - \([-x] = -[x] - 1\) when \( x \) is not an integer. Thus, we can write: \[ f(-x) = [-x] + \frac{1}{2} = (-[x] - 1) + \frac{1}{2} = -[x] - \frac{1}{2}. \] ### Step 5: Compare \( f(-x) \) and \( f(x) \) Now we need to compare \( f(-x) \) and \( f(x) \): - From our earlier steps, we have: \[ f(x) = [x] + \frac{1}{2}. \] \[ f(-x) = -[x] - \frac{1}{2}. \] ### Step 6: Check if \( f(-x) = -f(x) \) Now, we check if \( f(-x) = -f(x) \): \[ -f(x) = -([x] + \frac{1}{2}) = -[x] - \frac{1}{2}. \] This shows that: \[ f(-x) = -f(x). \] ### Conclusion Since \( f(-x) = -f(x) \), the function \( f(x) \) is an **odd function**. ### Final Answer The function \( f(x) = [x] + \frac{1}{2} \) is an **odd function**. ---

To determine whether the function \( f(x) = [x] + \frac{1}{2} \) (where \([x]\) denotes the greatest integer function) is even, odd, or neither, we can follow these steps: ### Step 1: Understand the Function The function \( f(x) \) is defined as: - \( f(x) = [x] + \frac{1}{2} \) for \( x \notin \mathbb{Z} \) (i.e., \( x \) is not an integer). ### Step 2: Check for Evenness A function \( f(x) \) is even if \( f(-x) = f(x) \) for all \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The function f(x)={x} sin (pi[x]) , where [.] denotes the greatest integer function and {.} is the fractional part function, is discontinuous at

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

Consider the function f(x) = {x+2} [cos 2x] (where [.] denotes greatest integer function & {.} denotes fractional part function.)

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

If the function f(x)=[4.8+a sin x] (where [.1-* denotes the greatest integer function is an evenfunction then a belongs to

RESONANCE-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Let g(x)=1+x-[x]a n df(x)={-1, x<0 0, x=0f, x >0 . Then for all x ,f(g...

    Text Solution

    |

  2. The function f(x)=log((1+sinx)/(1-sinx)) is

    Text Solution

    |

  3. The function f(x)=[x]+1/2,x!inI is a/an (wher [.] denotes greatest int...

    Text Solution

    |

  4. If the graph of the function y = f(x) is symmetrical about the line x ...

    Text Solution

    |

  5. Fundamental period of f(x)=sec(sin x) is

    Text Solution

    |

  6. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  7. Find the area below the curve y=[sqrt(2+2cos2x)] but above the x-axis ...

    Text Solution

    |

  8. The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

    Text Solution

    |

  9. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  10. If f: Rvec is an invertible function such that f(x)a n df^(-1)(x) are ...

    Text Solution

    |

  11. Let f(x)=(ax + b )/(cx+d). Then the fof (x)=x, provided that : (a!=0,...

    Text Solution

    |

  12. Let f(x)={(x,-1lexle1),(x^(2),1ltxle2):} the range of h^(-1)(x), where...

    Text Solution

    |

  13. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  14. The domain of definition of f(x)=sin^(-1)(|x-1|-2) is

    Text Solution

    |

  15. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  16. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  17. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  18. cosec^(-1)(cos x) is real if

    Text Solution

    |

  19. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  20. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |