Home
Class 12
MATHS
The domain of definition of f(x)=sin^(-1...

The domain of definition of `f(x)=sin^(-1)(|x-1|-2)` is

A

`[-2,0]uu[2,4]`

B

`(-2,0)uu(2,4)`

C

`[-2,0]uu[1,3]`

D

`(-2,0)uu(1,3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}(|x-1| - 2) \), we need to ensure that the expression inside the inverse sine function lies within its valid range, which is from -1 to 1. ### Step-by-Step Solution: 1. **Set up the inequality for the inverse sine function:** \[ -1 \leq |x-1| - 2 \leq 1 \] 2. **Solve the left side of the inequality:** \[ |x-1| - 2 \geq -1 \] Adding 2 to both sides: \[ |x-1| \geq 1 \] 3. **Solve the right side of the inequality:** \[ |x-1| - 2 \leq 1 \] Adding 2 to both sides: \[ |x-1| \leq 3 \] 4. **Break down the absolute value inequalities:** - For \( |x-1| \geq 1 \): - This gives us two cases: 1. \( x - 1 \geq 1 \) which simplifies to \( x \geq 2 \) 2. \( x - 1 \leq -1 \) which simplifies to \( x \leq 0 \) - For \( |x-1| \leq 3 \): - This also gives us two cases: 1. \( x - 1 \leq 3 \) which simplifies to \( x \leq 4 \) 2. \( x - 1 \geq -3 \) which simplifies to \( x \geq -2 \) 5. **Combine the results:** - From \( |x-1| \geq 1 \), we have: \[ x \leq 0 \quad \text{or} \quad x \geq 2 \] - From \( |x-1| \leq 3 \), we have: \[ -2 \leq x \leq 4 \] 6. **Find the intersection of the intervals:** - For \( x \leq 0 \) and \( -2 \leq x \leq 4 \), the intersection is: \[ -2 \leq x \leq 0 \] - For \( x \geq 2 \) and \( -2 \leq x \leq 4 \), the intersection is: \[ 2 \leq x \leq 4 \] 7. **Combine the two intervals:** - The domain of \( f(x) \) is: \[ x \in [-2, 0] \cup [2, 4] \] ### Final Answer: The domain of the function \( f(x) = \sin^{-1}(|x-1| - 2) \) is: \[ [-2, 0] \cup [2, 4] \]

To find the domain of the function \( f(x) = \sin^{-1}(|x-1| - 2) \), we need to ensure that the expression inside the inverse sine function lies within its valid range, which is from -1 to 1. ### Step-by-Step Solution: 1. **Set up the inequality for the inverse sine function:** \[ -1 \leq |x-1| - 2 \leq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The domain of definition of f(x)= sin^(-1)sqrt(x-1)

The domain of definition of f(x)=sin^(-1)[2-4x^(2)] is ([.] denotes the greatest integer function).

The domain of definition of f(X) = sin^(-1)(-x^(2)) is

The domain of definition of f(x)=cos^(-1)(x+[x]) is

The domain of definition of f(x)=sin^(-1){log_(2)(x^(2)+3x+4)} is

The domain of definition of cos^(-1)(2x-1) is

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

The domain of definition of f (x) = sin ^(-1) {log_(2)(x^(2) + 3x + 4)} , is

The domain of definition of f(x) = sqrt(1-|x|)/(2-|x|) is

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

RESONANCE-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Let f(x)={(x,-1lexle1),(x^(2),1ltxle2):} the range of h^(-1)(x), where...

    Text Solution

    |

  2. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  3. The domain of definition of f(x)=sin^(-1)(|x-1|-2) is

    Text Solution

    |

  4. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  5. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  6. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  7. cosec^(-1)(cos x) is real if

    Text Solution

    |

  8. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  9. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  10. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  11. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  12. If sin^(-1)x+sin^(-1)y=(2pi)/3, then cos^(-1)x+cos^(-1)y is equal to

    Text Solution

    |

  13. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  14. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  15. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  16. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  17. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  18. If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3, then

    Text Solution

    |

  19. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  20. If sin^(-1)xcot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |