Home
Class 12
MATHS
The function f(x)=cot^(-1)sqrt((x+3)x)+c...

The function `f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1)` is defined on the set `S`, where `S` is equal to

A

`{0,3}`

B

`(0,3)`

C

`{0,-3}`

D

`[-3,0]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the set \( S \) on which the function \( f(x) = \cot^{-1}(\sqrt{(x+3)x}) + \cos^{-1}(\sqrt{x^2 + 3x + 1}) \) is defined, we need to analyze the conditions for both components of the function. ### Step 1: Analyze \( \cot^{-1}(\sqrt{(x+3)x}) \) The expression \( \sqrt{(x+3)x} \) must be non-negative for the inverse cotangent function to be defined. Therefore, we need: \[ (x+3)x \geq 0 \] This inequality holds true when either both factors are non-negative or both are non-positive. 1. **Case 1**: Both factors are non-negative: - \( x + 3 \geq 0 \) implies \( x \geq -3 \) - \( x \geq 0 \) The critical points are \( x = -3 \) and \( x = 0 \). The intervals to consider are: - \( (-\infty, -3) \) - \( [-3, 0] \) - \( (0, \infty) \) Testing these intervals: - For \( x < -3 \): Both \( x+3 < 0 \) and \( x < 0 \) (not valid). - For \( -3 \leq x < 0 \): \( x+3 \geq 0 \) and \( x < 0 \) (valid). - For \( x \geq 0 \): Both \( x+3 \geq 0 \) and \( x \geq 0 \) (valid). Thus, the valid interval from this case is \( [-3, 0) \). 2. **Case 2**: Both factors are non-positive: - \( x + 3 \leq 0 \) implies \( x \leq -3 \) - \( x \leq 0 \) The only valid interval here is \( (-\infty, -3] \). Combining both cases, we have: \[ S_1 = [-3, 0) \] ### Step 2: Analyze \( \cos^{-1}(\sqrt{x^2 + 3x + 1}) \) The expression \( \sqrt{x^2 + 3x + 1} \) must be in the range \( [0, 1] \) for the inverse cosine function to be defined. Thus, we need: 1. **Non-negativity**: \[ x^2 + 3x + 1 \geq 0 \] To find the roots, we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{9 - 4}}{2} = \frac{-3 \pm \sqrt{5}}{2} \] Let \( r_1 = \frac{-3 - \sqrt{5}}{2} \) and \( r_2 = \frac{-3 + \sqrt{5}}{2} \). The quadratic opens upwards (as the coefficient of \( x^2 \) is positive), so it is non-negative outside the roots: \[ x \leq r_1 \quad \text{or} \quad x \geq r_2 \] 2. **Upper bound**: \[ x^2 + 3x + 1 \leq 1 \implies x^2 + 3x \leq 0 \] Factoring gives: \[ x(x + 3) \leq 0 \] This is satisfied in the interval \( [-3, 0] \). ### Step 3: Combine Conditions Now, we need to find the intersection of the intervals obtained from both components: - From \( \cot^{-1} \): \( S_1 = [-3, 0) \) - From \( \cos^{-1} \): \( S_2 = (-\infty, r_1] \cup [r_2, \infty) \) and \( [-3, 0] \) The intersection of \( S_1 \) and \( S_2 \) gives us the final set \( S \): \[ S = [-3, 0] \] Thus, the function \( f(x) \) is defined on the set \( S = [-3, 0] \).

To find the set \( S \) on which the function \( f(x) = \cot^{-1}(\sqrt{(x+3)x}) + \cos^{-1}(\sqrt{x^2 + 3x + 1}) \) is defined, we need to analyze the conditions for both components of the function. ### Step 1: Analyze \( \cot^{-1}(\sqrt{(x+3)x}) \) The expression \( \sqrt{(x+3)x} \) must be non-negative for the inverse cotangent function to be defined. Therefore, we need: \[ (x+3)x \geq 0 ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +1) is defined on the set S, where S is equal to

The function f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x)) is defined for:

The function f(x)=cos(log(x+sqrt(x^(2)+1))) is :

The function f(x)=sin^(-1)(2x-x^(2))+sqrt(2-(1)/(|x|)s)+(1)/([x^(2)]) defined in the interval (where [.] is the greatest integer function)

Find the real values of x for which the function f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x) is defined

The domain of the function f(x)=sqrt((1)/((x|-1)cos^(-1)(2x+1)tan3x)) is

The domain of the function f(x)=sqrt(cos^(-1)((1-|x|)/(2))) is

The range of the function f(x)=cot^(-1)((sqrt(3)x^(2))/(1+x^(2))) is (a, b) then the value of b/a is

The range of the function f(x)=(1)/(sqrt(4+3cos x)) is

RESONANCE-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  2. The domain of definition of f(x)=sin^(-1)(|x-1|-2) is

    Text Solution

    |

  3. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  4. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  5. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  6. cosec^(-1)(cos x) is real if

    Text Solution

    |

  7. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  8. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  9. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  10. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y=(2pi)/3, then cos^(-1)x+cos^(-1)y is equal to

    Text Solution

    |

  12. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  13. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  14. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  15. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  16. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  17. If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3, then

    Text Solution

    |

  18. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  19. If sin^(-1)xcot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  20. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |