Home
Class 12
MATHS
cosec^(-1)(cos x) is real if...

`cosec^(-1)(cos x)` is real if

A

`xepsilon[-1,1]`

B

`xepsilonR`

C

`x` is an odd multiple of `(pi)/2`

D

`x` is a multiple of `pi`

Text Solution

Verified by Experts

The correct Answer is:
D

NA
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of x for which csc^(-1)(cos x) is defined.

(cotx)/(1+cosec x)+ (1+cosec x)/(cot x) is equal to: (cotx)/(1+cosec x)+ (1+cosec x)/(cot x) का मान है:

Knowledge Check

  • If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal functions, then the maximum range of value of x is

    A
    `[- pi/2 , -1] cup[1, pi/2]`
    B
    `[- pi/2 , 0 ) cup ( 0, pi/2]`
    C
    `( - infty, -1] cup [1, infty)`
    D
    `[-1, 0) cup (0,1]`
  • If cosec^(-1) (cosec x) and cosec (cosec^(-1) x) are equal function then the maximum range of value of x is

    A
    `[-(pi)/(2), -1] uu [1, (pi)/(2)]`
    B
    `[-(pi)/(2), 0)uu[0, (pi)/(2)]`
    C
    `(-oo, -1] uu [1, oo)`
    D
    `[-1, 0) uu [0, 1)`
  • int(x^(2)+cos^(2)x)/(x^(2)+1)."cosec"^(2)xdx is equal to

    A
    `cotx +cot^(-1)x+C`
    B
    `-e^(ln tan^(-1))x-cot x+C`
    C
    `C-cotx+cot^(-1)x`
    D
    `-tan^(-1)x-("cosec x")/(sec x)+C`
  • Similar Questions

    Explore conceptually related problems

    D(cos x csc x)=

    The value of int(x^(2)+cos^(2)x)/(1+x^(2))"cosec"^(2)x dx is equal to:

    lim_(x rarr0+)((sin x)^((1)/(x))+(cos x)^(1/x)+(cosec x)^(x)) is equal to

    If y = sec^(-1) [ "cosec x"] + "cosec"^(-1) [sec x] + sin^(-1) [cos x] + cos^(-1)[sinx ], "then "(dy)/(dx) is equal to

    The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is