Home
Class 12
MATHS
Number of solutions of the equation cot^...

Number of solutions of the equation `cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2` is:

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1}(\sqrt{4 - x^2}) + \cos^{-1}(x^2 - 5) = \frac{3\pi}{2} \), we will analyze the domains and ranges of the functions involved and find the possible values of \( x \). ### Step 1: Determine the domain of \( \sqrt{4 - x^2} \) The expression inside the square root must be non-negative: \[ 4 - x^2 \geq 0 \] This simplifies to: \[ x^2 \leq 4 \] Thus, we have: \[ -2 \leq x \leq 2 \] **Hint:** Always check the conditions for square roots to ensure the expression is defined. ### Step 2: Determine the domain of \( \cos^{-1}(x^2 - 5) \) The argument of the \( \cos^{-1} \) function must lie within the interval \([-1, 1]\): \[ -1 \leq x^2 - 5 \leq 1 \] This gives us two inequalities to solve: 1. \( x^2 - 5 \geq -1 \) which simplifies to \( x^2 \geq 4 \) or \( |x| \geq 2 \) 2. \( x^2 - 5 \leq 1 \) which simplifies to \( x^2 \leq 6 \) or \( |x| \leq \sqrt{6} \) Combining these two results, we find: \[ |x| \geq 2 \quad \text{and} \quad |x| \leq \sqrt{6} \] Thus, the valid intervals for \( x \) are: \[ x \in [-\sqrt{6}, -2] \cup [2, \sqrt{6}] \] **Hint:** When dealing with inverse trigonometric functions, always ensure the inputs are within their defined ranges. ### Step 3: Combine the domains From Step 1, we have \( -2 \leq x \leq 2 \) and from Step 2, we have \( x \in [-\sqrt{6}, -2] \cup [2, \sqrt{6}] \). The intersection of these intervals gives us: \[ x = -2 \quad \text{and} \quad x = 2 \] **Hint:** Always look for intersections of intervals when combining conditions. ### Step 4: Check the solutions in the original equation 1. **For \( x = 2 \)**: \[ \cot^{-1}(\sqrt{4 - 2^2}) + \cos^{-1}(2^2 - 5) = \cot^{-1}(0) + \cos^{-1}(-1) \] \[ = \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] This satisfies the equation. 2. **For \( x = -2 \)**: \[ \cot^{-1}(\sqrt{4 - (-2)^2}) + \cos^{-1}((-2)^2 - 5) = \cot^{-1}(0) + \cos^{-1}(-1) \] \[ = \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] This also satisfies the equation. ### Conclusion Both \( x = 2 \) and \( x = -2 \) are valid solutions. Therefore, the number of solutions to the equation is: \[ \boxed{2} \]

To solve the equation \( \cot^{-1}(\sqrt{4 - x^2}) + \cos^{-1}(x^2 - 5) = \frac{3\pi}{2} \), we will analyze the domains and ranges of the functions involved and find the possible values of \( x \). ### Step 1: Determine the domain of \( \sqrt{4 - x^2} \) The expression inside the square root must be non-negative: \[ 4 - x^2 \geq 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

Number of integral solutions of the equation 2sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=3(pi)/(2) is

The sum of the solution of the equation 2sin^(-1)sqrt(x^(2)+x+1)+cos^(-1)sqrt(x^(2)+x)=(3 pi)/(2) is 0(b)-1( c) 1 (d) 2

The number of real solution of the equation tan^(-1)sqrt(x^(2)-3x+7)+cos^(-1)sqrt(4x^(2)-x+3)=pi is

Number of solutions of the equation 2cot^(-1)2+cos^(-1)((3)/(5))=cos ec^(-1)x is-

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

The number of solution of the equation cos^(-1)((1+x^(2))/(2x))-cos^(-1)x=(pi)/(2)+sin^(-1)x is given by

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

RESONANCE-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  2. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  3. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  4. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  5. If sin^(-1)x+sin^(-1)y=(2pi)/3, then cos^(-1)x+cos^(-1)y is equal to

    Text Solution

    |

  6. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  7. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  8. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  9. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  10. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  11. If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3, then

    Text Solution

    |

  12. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  13. If sin^(-1)xcot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  14. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  15. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  16. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  17. If cos^(-1)x-"cos"^(-1)y/2=alpha, then 4x^(2)-4xycos alpha+y^(2) is eq...

    Text Solution

    |

  18. For real numbers x and y, we write x* y, if x - y +sqrt2 is an irratio...

    Text Solution

    |

  19. Let A=NxxN be the Cartesian product of N and N. Let S={(m,n),(p,q)epsi...

    Text Solution

    |

  20. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |