Home
Class 12
MATHS
If pilexle2pi, then cos^(-1)(cosx) is eq...

If `pilexle2pi`, then `cos^(-1)(cosx)` is equal to

A

`x`

B

`pi-x`

C

`2pi+x`

D

`2pi-x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x \) is given as \( x \in [-2\pi, 2\pi] \) and we need to find \( \cos^{-1}(\cos x) \), we can follow these steps: ### Step 1: Understanding the Function The function \( \cos^{-1}(\cos x) \) returns the angle whose cosine is \( \cos x \). However, the output of \( \cos^{-1} \) is restricted to the range \( [0, \pi] \). ### Step 2: Determine the Value of \( x \) Given that \( x \) is in the interval \( [-2\pi, 2\pi] \), we need to find the equivalent angle of \( x \) that lies within the principal range of the \( \cos^{-1} \) function. ### Step 3: Adjust \( x \) to the Principal Range To adjust \( x \) to the range of \( [0, \pi] \), we can use the periodic property of the cosine function. Specifically, we can express \( x \) in terms of an equivalent angle: - If \( x \) is in the interval \( [0, \pi] \), then \( \cos^{-1}(\cos x) = x \). - If \( x \) is in the interval \( [\pi, 2\pi] \), then \( \cos^{-1}(\cos x) = 2\pi - x \). - If \( x \) is in the interval \( [-\pi, 0] \), then \( \cos^{-1}(\cos x) = -x \). ### Step 4: Apply the Range Since \( x \) can be negative or positive, we will consider the cases: - For \( x \in [-2\pi, -\pi] \): \( \cos^{-1}(\cos x) = -x \). - For \( x \in [-\pi, 0] \): \( \cos^{-1}(\cos x) = -x \). - For \( x \in [0, \pi] \): \( \cos^{-1}(\cos x) = x \). - For \( x \in [\pi, 2\pi] \): \( \cos^{-1}(\cos x) = 2\pi - x \). ### Step 5: Conclusion Thus, for \( x \in [-2\pi, 2\pi] \): - If \( x \) is in the interval \( [-2\pi, -\pi] \), \( \cos^{-1}(\cos x) = -x \). - If \( x \) is in the interval \( [-\pi, 0] \), \( \cos^{-1}(\cos x) = -x \). - If \( x \) is in the interval \( [0, \pi] \), \( \cos^{-1}(\cos x) = x \). - If \( x \) is in the interval \( [\pi, 2\pi] \), \( \cos^{-1}(\cos x) = 2\pi - x \). ### Final Answer Therefore, the answer to the question is: \[ \cos^{-1}(\cos x) = \begin{cases} -x & \text{if } x \in [-2\pi, -\pi] \\ -x & \text{if } x \in [-\pi, 0] \\ x & \text{if } x \in [0, \pi] \\ 2\pi - x & \text{if } x \in [\pi, 2\pi] \end{cases} \]

To solve the problem where \( x \) is given as \( x \in [-2\pi, 2\pi] \) and we need to find \( \cos^{-1}(\cos x) \), we can follow these steps: ### Step 1: Understanding the Function The function \( \cos^{-1}(\cos x) \) returns the angle whose cosine is \( \cos x \). However, the output of \( \cos^{-1} \) is restricted to the range \( [0, \pi] \). ### Step 2: Determine the Value of \( x \) Given that \( x \) is in the interval \( [-2\pi, 2\pi] \), we need to find the equivalent angle of \( x \) that lies within the principal range of the \( \cos^{-1} \) function. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If pi<=x<=2 pi, then cos^(-1)(cos x) is equal to (A) x(B)-x(C)2 pi+x(D)2 pi-x

lim_(x to pi/2)(1-sinx)/(cosx) is equal to :

lim_(xto pi/2)(pi-2x)^(cosx) is equal to

int_(0)^(pi)|1+2cosx| dx is equal to :

The value of the definite integral int_(t+2pi)^(t+5pi//2) {sin^(-1)(cosx)+cos^(-1)(cosx)} dx is equal to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_(0)^(pi) (1)/(1+3^(cosx)) dx is equal to

int _(-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

The value of cosx2x.cos3x…..cos 999x where x=(2pi)/1999 is p then 2^(1000)p is equal to __________

RESONANCE-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  2. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  3. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  4. If sin^(-1)x+sin^(-1)y=(2pi)/3, then cos^(-1)x+cos^(-1)y is equal to

    Text Solution

    |

  5. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  6. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  7. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  8. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  9. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  10. If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3, then

    Text Solution

    |

  11. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  12. If sin^(-1)xcot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  13. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  14. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  15. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  16. If cos^(-1)x-"cos"^(-1)y/2=alpha, then 4x^(2)-4xycos alpha+y^(2) is eq...

    Text Solution

    |

  17. For real numbers x and y, we write x* y, if x - y +sqrt2 is an irratio...

    Text Solution

    |

  18. Let A=NxxN be the Cartesian product of N and N. Let S={(m,n),(p,q)epsi...

    Text Solution

    |

  19. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  20. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |