Home
Class 12
MATHS
If alpha is a real root of the equation ...

If `alpha` is a real root of the equation `x^(2)+3x-tan2=0` then `cot^(-1)alpha+"cot"^(-1)1/(alpha)-(pi)/2` can be equal to

A

`0`

B

`(pi)/2`

C

`pi`

D

`(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \cot^{-1}(\alpha) + \cot^{-1}\left(\frac{1}{\alpha}\right) - \frac{\pi}{2} \) given that \( \alpha \) is a real root of the equation \( x^2 + 3x - 10 = 0 \). ### Step 1: Solve the quadratic equation The given quadratic equation is: \[ x^2 + 3x - 10 = 0 \] We can use the quadratic formula to find the roots: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 3 \), and \( c = -10 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant: \[ b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot (-10) = 9 + 40 = 49 \] ### Step 3: Find the roots Now, substituting back into the quadratic formula: \[ x = \frac{-3 \pm \sqrt{49}}{2 \cdot 1} = \frac{-3 \pm 7}{2} \] Calculating the two possible values: 1. \( x_1 = \frac{-3 + 7}{2} = \frac{4}{2} = 2 \) 2. \( x_2 = \frac{-3 - 7}{2} = \frac{-10}{2} = -5 \) Thus, the roots are \( \alpha = 2 \) and \( \beta = -5 \). ### Step 4: Evaluate the expression Now we need to evaluate: \[ \cot^{-1}(\alpha) + \cot^{-1}\left(\frac{1}{\alpha}\right) - \frac{\pi}{2} \] Substituting \( \alpha = 2 \): \[ \cot^{-1}(2) + \cot^{-1}\left(\frac{1}{2}\right) - \frac{\pi}{2} \] Using the identity \( \cot^{-1}(x) + \cot^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \): \[ \cot^{-1}(2) + \cot^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2} \] Thus, we have: \[ \frac{\pi}{2} - \frac{\pi}{2} = 0 \] ### Final Answer Therefore, the value of the expression is: \[ \boxed{0} \]

To solve the problem, we need to find the value of the expression \( \cot^{-1}(\alpha) + \cot^{-1}\left(\frac{1}{\alpha}\right) - \frac{\pi}{2} \) given that \( \alpha \) is a real root of the equation \( x^2 + 3x - 10 = 0 \). ### Step 1: Solve the quadratic equation The given quadratic equation is: \[ x^2 + 3x - 10 = 0 ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If alpha is only real root ofthe equation x^(3)+(cos1)x^(2)+(sin1)x+1=0, then (tan^(-1)alpha+(tan^(-1)1)/(alpha)) canot be equal to-

If alpha is the only real root of the equation x^(3)+bx^(2)+cx+1=0(b

If alpha and beta are the roots of the equation x^(2)+5x-49=0, then find the value of cot(cot^(-1)alpha+cot^(-1)beta)

Let alpha and beta be two real roots of the equation 5 cot ^(2) x- 3 cot x-1=0, then cot ^(2)(alpha + beta)=

If alpha and beta are roots of the equation x^(2)+px+2=0 and (1)/(alpha)and (1)/(beta) are the roots of the equation 2x^(2)+2qx+1=0 , then (alpha-(1)/(alpha))(beta-(1)/(beta))(alpha+(1)/(beta))(beta+(1)/(alpha)) is equal to :

If alpha,beta are the roots of the equation x^(2)-3x+1=0, then the equation with roots (1)/(alpha-2),(1)/(beta-2) will be

If alpha, beta are the roots of the equation 6x^(2) - 5x + 1 = 0 , then the value of (1)/(pi) [tan ^(-1) (alpha) + tan^(-1) (beta)] is ________

RESONANCE-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  2. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  3. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  4. If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3, then

    Text Solution

    |

  5. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  6. If sin^(-1)xcot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  7. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  8. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  9. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  10. If cos^(-1)x-"cos"^(-1)y/2=alpha, then 4x^(2)-4xycos alpha+y^(2) is eq...

    Text Solution

    |

  11. For real numbers x and y, we write x* y, if x - y +sqrt2 is an irratio...

    Text Solution

    |

  12. Let A=NxxN be the Cartesian product of N and N. Let S={(m,n),(p,q)epsi...

    Text Solution

    |

  13. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  14. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |

  15. The domain of the function f(x)=log(1//2)(-log(2)(1+1/(root(4)(x)))-1)...

    Text Solution

    |

  16. If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p ...

    Text Solution

    |

  17. Let f(x)=(x-[x])/(1+x-[x]),RtoA is onto then find set A. (where {.} an...

    Text Solution

    |

  18. Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^...

    Text Solution

    |

  19. The range of the function f(x) = log(sqrt2) (2- log2(16 sin^2x +1)) is

    Text Solution

    |

  20. Which of the following pair of functions are identical ?

    Text Solution

    |