Home
Class 12
MATHS
If the graph of the function f(x)=(a^(x)...

If the graph of the function `f(x)=(a^(x)-1)/(x^(n)(a^(x)+1))` is symmetric about `y`-axis then `n` is equal to

A

`1//5`

B

`1//3`

C

`1//4`

D

`-1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( n \) such that the function \[ f(x) = \frac{a^x - 1}{x^n (a^x + 1)} \] is symmetric about the \( y \)-axis, we need to check the condition for even functions. A function is symmetric about the \( y \)-axis if \( f(-x) = f(x) \). ### Step-by-Step Solution: 1. **Find \( f(-x) \)**: Substitute \(-x\) into the function: \[ f(-x) = \frac{a^{-x} - 1}{(-x)^n (a^{-x} + 1)} \] 2. **Simplify \( f(-x) \)**: We can rewrite \( a^{-x} \) as \( \frac{1}{a^x} \): \[ f(-x) = \frac{\frac{1}{a^x} - 1}{(-x)^n \left(\frac{1}{a^x} + 1\right)} = \frac{\frac{1 - a^x}{a^x}}{(-x)^n \left(\frac{1 + a^x}{a^x}\right)} \] Simplifying further: \[ f(-x) = \frac{1 - a^x}{(-x)^n (1 + a^x)} \] 3. **Rearranging \( f(-x) \)**: We can express \( (-x)^n \) as \( (-1)^n x^n \): \[ f(-x) = \frac{1 - a^x}{(-1)^n x^n (1 + a^x)} \] 4. **Set \( f(-x) \) equal to \( f(x) \)**: We need to equate \( f(-x) \) and \( f(x) \): \[ \frac{1 - a^x}{(-1)^n x^n (1 + a^x)} = \frac{a^x - 1}{x^n (a^x + 1)} \] 5. **Cross-multiply to eliminate fractions**: Cross-multiplying gives: \[ (1 - a^x)(x^n (a^x + 1)) = (a^x - 1)(-1)^n x^n (1 + a^x) \] 6. **Simplify both sides**: The left side becomes: \[ x^n (1 - a^x)(a^x + 1) = x^n (a^x + 1 - a^{2x} - a^x) = x^n (1 - a^{2x}) \] The right side simplifies to: \[ (-1)^n x^n (a^x - 1)(1 + a^x) = (-1)^n x^n (a^{2x} - 1) \] 7. **Equate the simplified forms**: Now we have: \[ x^n (1 - a^{2x}) = (-1)^n x^n (a^{2x} - 1) \] 8. **Divide both sides by \( x^n \) (assuming \( x \neq 0 \))**: \[ 1 - a^{2x} = (-1)^n (a^{2x} - 1) \] 9. **Rearranging gives**: \[ 1 - a^{2x} = (-1)^n a^{2x} - (-1)^n \] Rearranging this leads to: \[ 1 + (-1)^n = a^{2x} (1 + (-1)^n) \] 10. **Analyze the equation**: For this equation to hold for all \( x \), the term \( 1 + (-1)^n \) must equal zero, which implies that \( n \) must be odd. ### Conclusion: Thus, the value of \( n \) must be an odd integer.

To determine the value of \( n \) such that the function \[ f(x) = \frac{a^x - 1}{x^n (a^x + 1)} \] is symmetric about the \( y \)-axis, we need to check the condition for even functions. A function is symmetric about the \( y \)-axis if \( f(-x) = f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise JEE ADVANCED|14 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmetrical about the y-a xi s,then n equals 2 (b) (2)/(3)(c)(1)/(4) (d) (1)/(3)

Draw the graph of the function y=f(x)=tan^(-1)((1-x^(2))/(1+x^(2))) .

The graph of the function y = log_(a) (x + sqrt(x^(2) + 1)) is not symmetric about the origin.

The real valued function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is even,then the value of n can be

If the graph of the function is symmetric about y-axis, then n is equal to :

If the graph of the function y=f(x) is symmetrical about the line x=2, then

RESONANCE-RELATION, FUNCTION & ITF-MCQ_TYPE
  1. f:NtoN where f(x)=x-(-1)^(x) then f is

    Text Solution

    |

  2. Which one of the following pair of functions are NOT identical?

    Text Solution

    |

  3. If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmet...

    Text Solution

    |

  4. If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(...

    Text Solution

    |

  5. Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 < x < 1(x != 0), then : x |...

    Text Solution

    |

  6. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  7. If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the great...

    Text Solution

    |

  8. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  9. Identify the statement(s) which is/are incorrect?

    Text Solution

    |

  10. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  11. Let f:R->R and g:R->R be two one-one and onto functions such that they...

    Text Solution

    |

  12. Which of the following pairs of functions are identical?

    Text Solution

    |

  13. Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2, then

    Text Solution

    |

  14. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y-"sec"[co...

    Text Solution

    |

  15. If alpha satisfies the inequation x^2 - x - 2 > 0, then a value exists...

    Text Solution

    |

  16. For the finuction f(x)=ln (sin^-1 log2 x)

    Text Solution

    |

  17. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  18. The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)si...

    Text Solution

    |

  19. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  20. If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)}then

    Text Solution

    |