Home
Class 12
MATHS
The number of real solutions of the e...

The number of real solutions of the equation `sin^(-1)(sum_(i=1)^oox^(i+1)-xsum_(i=1)^oo(x/2)^i)=pi/2-cos^(-1)(sum_(i=1)^oo(-x/2)^i-sum_(i=1)^oo(-x)^i)` lying in the interval `(-1/2,1/2)` is ____. (Here, the inverse trigonometric function `=sin^(-1)x` and `cos^(-1)x` assume values in `[pi/2,pi/2]` and `[0,\ pi]` , respectively.)

Text Solution

Verified by Experts

The correct Answer is:
ab

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise JEE MAIN|15 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise HLP_TYPE|42 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise COMPREHENSION_TYPE|6 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 , then sum_(i=1)^(2n)x_(i) is :

sum_(i=1)^(oo)tan^(-1)((1)/(2r^(2)))=

sum_(m=1)^(32)m[sum_(k=1)^(6)sin2k(pi)/(7)-i cos2k(pi)/(7)]

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(2^(i+j+k)) is equal to

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

sum_(m=1)^(4n+1)[sum_(K=1)^(m-1){sin((2k pi)/(m))-i cos((2k pi)/(m))}^(m)]

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=