Home
Class 12
MATHS
Let E1={x in R : x!=1\ a n dx/(x-1)>0} ...

Let `E_1={x in R : x!=1\ a n dx/(x-1)>0}` and `E_2={x in E_1:sin^(-1)((log)_e(x/(x-1)))\ i s\ a\ r e a l\ nu m b e r}` . Here, the inverse trigonometric function `sin^(-1)x` assumes values in `[pi/2,pi/2]` . Let `f: E_1->R` be the function defined by `f(x)=(log)_e(x/(x-1))` and `g: E_2->R` be the function defined by `g(x)=sin^(-1)((log)_e(x/(x-1)))` . LIST-I LIST-II P. The range of `f` is 1. `(-oo,1/(1-e)]uu[e/(e-1),\ oo)` Q. The range of `g` contains 2. `(0,\ 1)` R. The domain of `f` contains 3. `[1/2,1/2]` S. The domain of `g` is 4. `(-oo,\ 0)uu(0,\ oo)` 5. `(-oo,\ e/(e-1)]` 6. `(-oo,\ 0)uu(1/2, e/(e-1)]` The correct option is: `P->4;\ \ Q->2;\ \ R->1;\ \ S->1` (b) `P->3;\ \ Q->3;\ \ R->6;\ \ S->5` (c) `P->4;\ \ Q->2;\ \ R->1;\ \ S->6` (d) `P->4;\ \ Q->3;\ \ R->6;\ \ S->5`

Text Solution

Verified by Experts

The correct Answer is:
b

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise JEE MAIN|15 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise HLP_TYPE|42 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise COMPREHENSION_TYPE|6 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Let E_1={x in R : x!=1 and x/(x-1)gt0} and E_2={x in E_1:sin^(-1)((log)_e(x/(x-1))) is a real number} . Here, the inverse trigonometric function sin^(-1)x assumes values in [pi/2,pi/2] Let f: E_1->R be the function defined by f(x)=(log)_e(x/(x-1)) and g: E_2->R be the function defined by g(x)=sin^(-1)((log)_e(x/(x-1))) LIST-I LIST-II P. The range of f is 1. (-oo,1/(1-e)]uu[e/(e-1),oo) Q. The range of g contains 2. (0, 1) R. The domain of f contains 3. [1/2,1/2] S. The domain of g is 4. (-oo,0)uu(0, oo) 5. (-oo, e/(e-1)] 6. (-oo,0)uu(1/2, e/(e-1)] The correct option is: Prarr4; rarr2; Rrarr1;Srarr1 (b) Prarr3; Qrarr3; Rrarr6; Srarr5 (c) Prarr4; Qrarr2; Rrarr1; Srarr6 (d) Prarr4; Qrarr3; Rrarr6; Srarr5

Domain of the function f(x)=sin^(-1)((1+e^(x))^(-1))

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

Range of f(x)=cot^(-1)(log_(e)(1-x^(2))) is

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f'(1)=

The function f:R^(+)rarr(1,e) defined by f(x)=(x^(2)+e)/(x^(2)+1) is

The range of the function f(x)=(e^(x)-1)/(e^(x)+1) is

The range of the function f(x)=sin cos(ln((x^(2)+1)/(x^(2)+e))) is