Home
Class 12
MATHS
Express sin^(-1)x in terms of (i) cos^(-...

Express `sin^(-1)x` in terms of (i) `cos^(-1)sqrt(1-x^(2))` (ii) `"tan"^(-1)x/(sqrt(1-x^(2)))` (iii) `"cot"^(-1)(sqrt(1-x^(2)))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \sin^{-1} x \) in terms of \( \cos^{-1} \sqrt{1 - x^2} \), \( \tan^{-1} \frac{x}{\sqrt{1 - x^2}} \), and \( \cot^{-1} \frac{\sqrt{1 - x^2}}{x} \), we can follow these steps: ### Step 1: Define \( \sin^{-1} x \) Let \( \sin^{-1} x = \theta \). This implies that: \[ \sin \theta = x \] ### Step 2: Find \( \cos \theta \) Using the Pythagorean identity: \[ \cos^2 \theta + \sin^2 \theta = 1 \] Substituting \( \sin \theta = x \): \[ \cos^2 \theta + x^2 = 1 \] Thus, \[ \cos^2 \theta = 1 - x^2 \] Taking the square root: \[ \cos \theta = \sqrt{1 - x^2} \quad \text{(since } \theta \text{ is in the range of } \sin^{-1} \text{, } \cos \theta \text{ is non-negative)} \] ### Step 3: Express \( \sin^{-1} x \) in terms of \( \cos^{-1} \) From the definition of cosine inverse: \[ \theta = \cos^{-1}(\cos \theta) = \cos^{-1}(\sqrt{1 - x^2}) \] Thus, we have: \[ \sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} \] ### Step 4: Express \( \sin^{-1} x \) in terms of \( \tan^{-1} \) Using the definition of tangent: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{x}{\sqrt{1 - x^2}} \] Thus, \[ \theta = \tan^{-1} \left( \frac{x}{\sqrt{1 - x^2}} \right) \] So we have: \[ \sin^{-1} x = \tan^{-1} \left( \frac{x}{\sqrt{1 - x^2}} \right) \] ### Step 5: Express \( \sin^{-1} x \) in terms of \( \cot^{-1} \) Using the definition of cotangent: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{1 - x^2}}{x} \] Thus, \[ \theta = \cot^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) \] So we have: \[ \sin^{-1} x = \cot^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) \] ### Final Results We can summarize the results as follows: 1. \( \sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} \) 2. \( \sin^{-1} x = \tan^{-1} \left( \frac{x}{\sqrt{1 - x^2}} \right) \) 3. \( \sin^{-1} x = \cot^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) \)

To express \( \sin^{-1} x \) in terms of \( \cos^{-1} \sqrt{1 - x^2} \), \( \tan^{-1} \frac{x}{\sqrt{1 - x^2}} \), and \( \cot^{-1} \frac{\sqrt{1 - x^2}}{x} \), we can follow these steps: ### Step 1: Define \( \sin^{-1} x \) Let \( \sin^{-1} x = \theta \). This implies that: \[ \sin \theta = x \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

If -1

If y=tan^(-1)sqrt(x^(2)+1)+cot^(-1)sqrt(x^(2)+1)" then "(dy)/(dx)=

(tan^(-1)(1-x))/(1+x)=(1)/(2)(sin^(-1)x)/(sqrt(1+x^(2)))

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

RESONANCE-RELATION, FUNCTION & ITF-HLP_TYPE
  1. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  2. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  3. It is given that f 9x) is difined on R satisfyinf f (1)=1 and for AA ...

    Text Solution

    |

  4. Find the integral solutions to the equation [x][y]=x+y . Show that all...

    Text Solution

    |

  5. Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if...

    Text Solution

    |

  6. Suppose X and Y are two sets and f:XtoY is a function. For a subset A ...

    Text Solution

    |

  7. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  8. Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cos...

    Text Solution

    |

  9. Let f(x)=(log)2(log)3(log)4(log)5(s in x+a^2)dot Find the set of value...

    Text Solution

    |

  10. tan^(-1)(tan theta)={(pi+theta,-(3pi)/2lt theta lt -(pi)/2),(theta , -...

    Text Solution

    |

  11. Express cot(cosec^(-1)x) as an algebraic function of x.

    Text Solution

    |

  12. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  13. If f(x)=[(x,xlt1),(x^(2),1lexle4),(8sqrt(x),xgt4):} the find f^(-1)(x)...

    Text Solution

    |

  14. sin^(-1)(x^2/4+y^2/9)+cos^(-1)(x/(2sqrt2)+y/(3sqrt2)-2)

    Text Solution

    |

  15. If alpha=2 arc t a n((1+x)/(1-x)) in B=a r c s i n((1-x^2)/(1+x^2))...

    Text Solution

    |

  16. Solve {cos^(-1)x}+[tan^(-1)x]=0 for real values of x. Where {.} and [....

    Text Solution

    |

  17. Find the set of all real values of x satisfying the inequality sec^(-1...

    Text Solution

    |

  18. Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1...

    Text Solution

    |

  19. An integral solution of the equation Tan^(-1)x+Tan^(-1)(1//y)=Tan^(-1)...

    Text Solution

    |

  20. Determine the integral values of k for which the system (tan^(-1)x)^(2...

    Text Solution

    |