Home
Class 12
MATHS
Find the value of : cos[(pi)/3-"sin"^(-1...

Find the value of : `cos[(pi)/3-"sin"^(-1)(-1/2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \cos\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right) \), we can follow these steps: ### Step 1: Find \( \sin^{-1}\left(-\frac{1}{2}\right) \) The value of \( \sin^{-1}(x) \) gives us the angle whose sine is \( x \). We know that: \[ \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \] Thus, we have: \[ \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \] ### Step 2: Substitute into the cosine expression Now we substitute this result back into our original expression: \[ \cos\left(\frac{\pi}{3} - \left(-\frac{\pi}{6}\right)\right) = \cos\left(\frac{\pi}{3} + \frac{\pi}{6}\right) \] ### Step 3: Simplify the angle Next, we need to simplify the angle: \[ \frac{\pi}{3} + \frac{\pi}{6} = \frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] ### Step 4: Calculate the cosine Now we find the cosine of the simplified angle: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] ### Final Answer Thus, the value of \( \cos\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right) \) is: \[ \boxed{0} \]

To solve the problem of finding the value of \( \cos\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right) \), we can follow these steps: ### Step 1: Find \( \sin^{-1}\left(-\frac{1}{2}\right) \) The value of \( \sin^{-1}(x) \) gives us the angle whose sine is \( x \). We know that: \[ \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \] Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise HLP_TYPE|42 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of 1 cos(29pi//3)

Find the value of sin[pi/3 - sin^(-1) (- 1/2)]

Find the value of : cos{sin("sin"^(-1)(pi)/6)}

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

Find the values of sin{(pi)/(6)-sin^(-1)(-(sqrt(3))/(2))}

Find the value of sin^(-1)(cos(pi/5))

Find the value of the following sin[pi/3 - sin^(-1) . (1/2)]

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

Find the value of : (1) sin^(-1)(sin.(5pi)/(6)) (2) cos^(-1)(cos.(13pi)/(6)) (3) tan^(-1)(tan.(7pi)/(6))