Home
Class 12
MATHS
Define: cos^(-1)((1-x^(2))/(1+x^(2))) in...

Define: `cos^(-1)((1-x^(2))/(1+x^(2)))` in terms of `tan^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \) in terms of \( \tan^{-1}x \), we can follow these steps: ### Step 1: Set up the equation Let: \[ \theta = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \] This implies: \[ \cos \theta = \frac{1-x^2}{1+x^2} \] ### Step 2: Use the identity for cosine We know that: \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \] We can represent this in a right triangle where the adjacent side is \( 1 - x^2 \) and the hypotenuse is \( 1 + x^2 \). ### Step 3: Find the opposite side Using the Pythagorean theorem: \[ \text{opposite}^2 + (1 - x^2)^2 = (1 + x^2)^2 \] Expanding both sides: \[ \text{opposite}^2 + (1 - 2x^2 + x^4) = (1 + 2x^2 + x^4) \] Simplifying: \[ \text{opposite}^2 + 1 - 2x^2 + x^4 = 1 + 2x^2 + x^4 \] This leads to: \[ \text{opposite}^2 = 4x^2 \] Thus: \[ \text{opposite} = 2\sqrt{x} \] ### Step 4: Find \( \tan \theta \) Now we can find \( \tan \theta \): \[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{2\sqrt{x}}{1 - x^2} \] ### Step 5: Express \( \theta \) in terms of \( \tan^{-1} \) Thus, we can express \( \theta \): \[ \theta = \tan^{-1}\left(\frac{2\sqrt{x}}{1 - x^2}\right) \] ### Final Result Therefore, we have: \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \tan^{-1}\left(\frac{2\sqrt{x}}{1 - x^2}\right) \]

To express \( \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \) in terms of \( \tan^{-1}x \), we can follow these steps: ### Step 1: Set up the equation Let: \[ \theta = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \] This implies: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise HLP_TYPE|42 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x

If x >1 , then write the value of sin^(-1)((2x)/(1+x^2)) in terms of tan^(-1)x

cos^(-1)((1-x^(2))/(1+x^(2)))w.r.t. tan^(-1)x

Define y=cos^(-1)(4x^(3)-3x) in terms of cos^(-1)x

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

Differentiate tan^(-1)sqrt((1-x^(2))/(1+x^(2))) with respect to cos^(-1)x^(2).

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1) _______.

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is