Home
Class 12
MATHS
Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) ...

Define: `tan^(-1)((3x-x^(3))/(1-3x^(2)))` in terms of `tan^(-1)x`

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1)((3x-x^(3))/(1-3x^(2)))={(3tan^(-1)x,;,-1/(sqrt(3))ltxlt1/(sqrt(3))),(pi+3tan^(-1)x,;,-ooltxlt-1/(sqrt(3))),(-pi+3tan^(-1)x,;,1/(sqrt(3))ltxltoo):}`

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise HLP_TYPE|42 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Define: cos^(-1)((1-x^(2))/(1+x^(2))) in terms of tan^(-1)x

If -1/(sqrt(3))

tan^(-1)((sqrt(x)(3-x))/(1-3x))

Differentiate w.r.t. as indicated : tan^(-1)((3x-x^(3))/(1-3x^(2)))" w.r.t. "tan^(-1)((x)/(sqrt(1-x^(2))))

Differentiate w.r.t. as indicated : "tan"^(-1)(3x-x^(3))/(1-3x^(2))" w.r.t. ""tan"^(-1)(2x)/(1-x^(2))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x>(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3)) w.r.t tan ^(-1)((x)/(sqrt(1-x^(2))))

Prove that: i) sin^(-1)(3x-4x^(3))=3sin^(-1)x, |x| le 1/2 ii) cos^(-1)(4x^(2)-3x)=3cos^(-1)x,1/2 le x le 1 iii) tan^(-1)""(3x-x^(3))/(1-3x^(2))=3tan^(-1)x, |x| lt 1/sqrt(3) iv) tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""(3x-x^(3))/(1-3x^(2))