Home
Class 12
MATHS
If xepsilon(-1,1) and 2tan^(-1)x=tan^(-1...

If `xepsilon(-1,1)` and `2tan^(-1)x=tan^(-1)y` then find `y` in term of `x`.

Text Solution

Verified by Experts

The correct Answer is:
`y=(2x)/(1-x^(2))`

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise HLP_TYPE|42 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)y=4tan^(-1)x , then 1//y is zero for

tan^(-1)x+tan^(-1)y is equal to

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

Formula for tan^(-1)(x)+-tan^(-1)(y)

If x=2. y=3 , then tan^(-1)x+tan^(-1)y=

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

If 2tan^(- 1)(c o s e c(tan^(- 1)(x))-tan(cot^(- 1)(x)))=tan^(- 1)y then y is equal to