Home
Class 12
MATHS
Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13...

Prove that: `sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/2`

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise HLP_TYPE|42 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that :tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that: cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=sin^(-1)((56)/(65))

Prove that: sin^(-1)(12)/(13)+cos^(-1)(4)/(5)+tan^(-1)(63)/(16)=pi

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi