Home
Class 12
PHYSICS
The average value of current i=I(m) sin ...

The average value of current `i=I_(m) sin omega t from t=(pi)/(2 omega )` to `t=(3 pi)/(2 omega)` si how many times of `(I_m)`?

Text Solution

Verified by Experts

`ltIgt =(underset(0)overset((2pi)/(omega))int sin omegatdt)/((2pi)/(omega))=((I_(m))/(omega)(1-cos omega(2pi)/(omega)))/((pi)/(omega))=(2I_(m))/(pi) `
(ii) `ltIgt =(underset((pi)/(2omega))overset((2pi)/(omega))int I_(m) sin omegatdt)/((pi)/(omega))=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the rms value of current i=I_(m)sin omegat from (i) t=0 "to" t=(pi)/(omega) (ii) t=(pi)/(2omega) "to" t=(3pi)/(2omega)

r.m.s. value of current i=3+4 sin (omega t+pi//3) is:

The average value of alternating current I=I_(0) sin omegat in time interval [0, pi/omega] is

The average value of a.c. voltge E =E_(0) sin omega t over the time interval t = 0 to t = pi//omega is

The r.m.s. value of I = I_(1) sin omega t + I_(2) cos omega t is

The r.m.s. value of I = I_(1) sin omega t + I_(2) cos omega t is

What is the average value of atlernating current, I = I_(0) sin omega t over time interval t = pi//omega to t = pi//omega ?

Find the average value I_(m) of alternating current intensity over time interval from 0 to (pi)/(omega)

If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is