Home
Class 12
MATHS
(cos^2 alpha - cos^2 beta)/(cos^2 alpha*...

`(cos^2 alpha - cos^2 beta)/(cos^2 alpha*cos^2 beta) = tan^2 beta - tan^2 alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos^2alpha-cos^2beta)/(cos^2alpha cos^2beta)=tan^2beta-tan^2alpha

Prove that cos theta =(cos alpha- cos beta)/(1 -cos alpha*cos beta) ⇔ tan theta/2 = pm tan alpha/2 *cot beta/2 .

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

cos theta = (cos alpha-cos beta) / (1-cos alpha * cos beta) rArr tan ^ (2) ((theta) / (2)) tan ^ (2) ((beta) / (2))

If cos theta=(cos alpha-cos beta)/(1-cos alpha*cos beta), prove that tan(theta)/(2)=+-(tan alpha)/(2)(cot beta)/(2)

If cos theta = ( cos alpha - cos beta )/(1- cos alpha cos beta ) " then " tan^(2)""((theta )/(2)) tan^(2)""((beta)/(2))=

If cos theta=(cos alpha+cos beta)/(1+cos alpha cos beta), prove that (tan theta)/(2)=-(tan alpha)/(2)(tan beta)/(2)