Home
Class 12
MATHS
f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^...

`f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx))` then find `(d^ny)/(dx^n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((log((e)/(x^(2))))/(log(ex^(2))))+tan^(-1)((3+2log x)/(1-6log x)) then (d^(2)y)/(dx^(2)) is (a) 2(b)1(c)0(d)-1

If y=tan^-1((log(e/x^2))/(log(ex^2)))+tan^-1((3+2logx)/(1-6logx)), then (d^2y)/(dx^2) is (a) 2 (b) 1 (c) 0 (d) -1

If y = tan^(-1)[(x/log ex^3)] + tan^(-1)[(5 + 3logx)/(1-15logx)] then find (dy)/(dx) .

If f(x)=tan^(-1)[(log((e)/(x^(2))))/(log(ex^(2)))]+tan^(-1)[(3+2logx)/(1-6logx)] then the value of f''(x) is

If f(x)=tan^(-1)[(log((e )/(x^(2))))/(log (ex^(2)))]+tan^(-1)[(3+2 log x)/(1-6 log x)] then the value of f''(x) is

If quad y=tan^(-1){(log_(e)((e)/(x^(2))))/(log_(e)(ex^(2)))}+tan^(-1)((3+2log_(e)x)/(1-6log_(e)x)), then (d^(2)y)/(dx^(2))=

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is