Home
Class 12
MATHS
[" Given,"z=cos(2 pi)/(2n+1)+i sin(2 pi)...

[" Given,"z=cos(2 pi)/(2n+1)+i sin(2 pi)/(2n+1)," 'n' a positive integer,find the equation whose roots are,"],[alpha=z+z^(3)+.....+z^(2n)-1quad &^(2)beta=z^(2)+z^(4)+.....+z^(2n)],[[REE2000" (Mains) "3" out of "100]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer but not a multiple of 3 and z=-1+i sqrt(3), then (z^(2n)+2^(n)z^(n)+2^(2n)) is equal to

If z^(n) = cos"" (n pi)/(3) + isin"" (n pi)/(3), then z_(1), z_(2) …. Z_(6) is

If n is an integer and z=cos theta+i sin theta , then (z^(2 n)-1)/(z^(2 n)+1)=

If z_n=[cos (pi/2)^(n/2)+i sin (pi/2)^(n/2)] then z_1.z_2.z_3…….oo

if (2z-n)/(2z+n)=2i-1,n in N in N and IM(z)=10, then

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^(n)+2^(4n) is equal to

If z_(r)=(cos(pi alpha))/(n^(2))+i(sin(r alpha))/(n^(2)), where r=1,2,3...,n, then lim_(n rarr oo)z_(1)z_(2)z_(3)...z_(n) is equal to

If n is an integer and z=cis theta,(theta ne (2n+1)pi/2), then show that (z^(2n)-1)/(z^(2n)+1)=i tan n theta) .