Home
Class 12
MATHS
Q.23" If "a^(x)=b^(y)=c^(z)" and "b^(2)=...

Q.23" If "a^(x)=b^(y)=c^(z)" and "b^(2)=ac" prove that "y=(2xz)/(x+z)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

if a^(x)=b^(y)=c^(z) and b^(2)= acprove that y=(2xz)/(x+z)

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If x^(a) = y^(b) = z^ (c ) and y^(2) = xz, prove that b= ( 2ac)/( a+c)

If a^(x)=b^(y)=c^(z)backslash and quad b^(2)=ac, then y equals a.(xz)/(x+z) b.(xz)/(2(x-z)) c.(xz)/(2(z-x))d .(2xz)/((x+z))