Home
Class 9
MATHS
If a=x^(m+n)\ y^1,\ b-x^(n+l)\ y^m and c...

If `a=x^(m+n)\ y^1,\ b-x^(n+l)\ y^m` and `c=x^(l+m)y^n ,` prove that `a^(m-n)\ b^(n-1)\ c^(1-m\ )=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=x^(m+n)\ y^l,\ b=x^(n+l)\ y^m and c=x^(l+m)y^n , prove that a^(m-n)\ b^(n-l)\ c^(l-m\ )=1

If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^(n) , Prove that : a^(m-n) . b^(n - 1) . c^(l-m) = 1

If x=a^(m+n),\ y=a^(n+l) and z=a^(l+m) , prove that x^m y^n z^l=x^n y^l z^m

If x=a^(m+n),y=a^(n+l) and z=a^(l+m), prove that x^(m)y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)

If x=a^(m+n),y=a^(n+1) and z=a^(l+m) prove that x^(m)+y^(n)z^(l)=x^(n)y^(l)z^(m)

If x^m\ y^n=1 , prove that (dy)/(dx)=-(m y)/(n x)

If y=(x-a)^(m)(x-b)^(n) , prove that (dy)/(dx)=(x-a)^(m-1)(x-b)^(n-1)[(m+n)x-(an+bm) ].

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)