Home
Class 11
MATHS
[" If "cosec theta-sin theta=m^(3)" and ...

[" If "cosec theta-sin theta=m^(3)" and "sec theta-cos theta=n^(3)," then "m^(2)n^(2)],[(m^(2)+n^(2))" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If "cosec" theta- sin theta=m^(3) and sec theta-cos theta=n^(3) , then prove that m^(2)n^(2)(m^(2)+n^(2))=1.

If cos ec theta-sin theta=m and sec theta-cos theta,=n, eliminate theta

if cos ec theta-sin theta=m and sec theta-cos theta=n, eliminate theta

If "cosec " theta - sin theta = m, sec theta - cos theta =n , " then "(m^(2)n)^(2//3) + (mn^(2))^(2//3) =

If "cosec" theta - sin theta = m and sec theta - cos theta = n, then what is m^(4/3) n^(2/3) +m^(2/3) n^(4/3) equal to ?

If cos theta+sin theta=m and sec theta+csc theta=n,then(2m^(2))/((m^(2)-1)^(2))=?

If cos ec theta-sin theta=m and sec theta-cos theta=n prove that (m^(2)n)^((2)/(3))+(mn^(2))^((2)/(3))=1

If cot theta + tan theta = m , sec theta - cos theta = n " then " (m^(2)n)^(2//3)-(mn^(2))^(2//3)

If cot theta+tan theta=m and sec theta-cos theta=n then (m^(2))^((2)/(3))-(mn^(2))^((2)/(3))=

If cosec theta- sin theta = m and sec theta - cos theta = n , prove that: (m^(2)n)^(2/3)+(n^(2)m)^(2/3)=1 .