Home
Class 11
MATHS
If logx(256)=8/5, then x is equal to (1)...

If `log_x(256)=8/5`, then x is equal to (1) 64 (2) 16 (3) 32

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(32)x=0.8 , t h e n x is equal to a. 25.6 b. 16 c. 10 d. 12.8

If log_(x)4=(1)/(4), then x is equal to a.16 b.64 .128 d.256

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If log_(3){5+4log_(3)(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) log_(2)16

If log_(4)x+log_(2)x=6, then x is equal to a.2 b.4 c.8 d.16

If log_(x)((9)/(16))=-(1)/(2), then x is equal to a.-(3)/(4) b.(3)/(4) c.(81)/(256)d.(256)/(81)

If log_(10)(x-1)^(3)-3log_(10)8(x-3)=log_(10)8 then log_(x)625 has the value of equal to: 5(b)4 (c) 3 (d) 2

If x y^2=4a n d(log)_3((log)_2x)+(log)_(1/3)((log)_(1/2)y)=1 ,then x equals (a) 4 (b) 8 (c) 16 (d) 64