Home
Class 12
MATHS
" Who le y "y sqrt(x^(2)+1)=log(x+sqrt(x...

" Who le y "y sqrt(x^(2)+1)=log(x+sqrt(x^(2)+1))" ,show that "(x^(2)+1)(dy)/(dx)+xy-1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If ysqrt(x^(2)+1)=log(x+sqrt(x^(2)+1)) , show that (x^(2)+1)(dy)/(dx)+xy-1=0 .

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x), show that (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x) , show that, (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

If ysqrt(x^2+1)=log(sqrt(x^2+)1-x), show that(x^2+1)(dy)/(dx)+x y+1=0

If sqrt(x^2 +1) y = log(sqrt(x^2+1)-x) , then show that (x^2 +1) dy/dx + xy + 1=0

answeer the following : (i) if y sqrt(x^2+1)=log(sqrt(x^2+1)-x) , show that , (x^2+1) dy/dx +xy+1=0

If log(sqrt(1+x^(2))-x)=ysqrt(1+x^(2)) , then show that (1+x^(2))(dy)/(dx)+xy+1=0 .

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0