Home
Class 12
MATHS
" The value of "lim(t rarr oo)(int(0)^(t...

" The value of "lim_(t rarr oo)(int_(0)^(t)(tan^(-1)x)^(2)dx)/(sqrt(t^(2)+1))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)(int_(0)^(x)(tan^(-1)x)^(2))/(sqrt(x^(2)+1))dx

The value of limit lim_(t rarr oo)(int_(0)^(1)(tan^(-1)x)^(2)dx)/(sqrt(t^(2)+1))

the value of lim_(x rarr oo)(int_(0rarr x)(tan^(-1)x)^(2)dx)/(sqrt(x^(2)+1))

lim_(x rarr oo)int_(0)^(x)xe^(t^(2)-x^(2))dt

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(x rarr oo)((int_(0)^(x+y)e^(t^(2))dt)^(2))/(int_(0)^(x+y)e^(2t^(2))dt) is equal to (i)0(ii)1 (iii) lim_(x rarr0)((int_(0)^(x)cos t^(2))/(x))-1(iv)-1

lim_(x rarr oo)int_(0)^(x){(1)/(sqrt(1+t^(2)))-(1)/(1+t)}dt=