Home
Class 12
MATHS
In the identity (25 !)/(x(x+1)(x+2)....(...

In the identity `(25 !)/(x(x+1)(x+2)....(x+25))=sum_(i=0)^25(A_i)/(x+i)` then sum of digits of number `A_24` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1+x^(4)+x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i), for all x in R, then a_(2) is :

If I=int_(-2016)^(2016)(dx)/(1+x^(9)+sqrt(1+x^(18))) ,then find the sum of digits of I

Sum of the coefficients of (1-x)^(25) is:

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 , then sum_(i=1)^(2n)x_(i) is :

If sum_(i=1)^(n)(x_(i)-2)=110, sum_(i=1)^(n)(x_(i)-5)=20 , then what is the mean?

I = int (dx)/( 4x^(2) + 25)

FOr xin r, x != -1 , If (1+x)^(2016)+x(1+x)^(2015)+x^2(1+x)^(2014)+.......+x^(2016)=sum_(i=0)^2016 a_i x^i , then a_17 is equal to -