Home
Class 12
MATHS
If x and t are independent variables and...

If x and t are independent variables and `f(x)=(int_0^x e^(x-t)f^(prime)(t)dt)-(x^2-x+1)e^x`, where `f(x)` is a differentiable function, then `f(1/2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

What is F^1(x) if F(x)= int_0^x e^(2t)sin 3t dt

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is