Home
Class 14
MATHS
z*(log x)^(x)+x^(log x)...

z*(log x)^(x)+x^(log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (yz)^(log y-log z)xx(zx)^(log z-log x)xx(xy)^(log x-log y) is

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

Suppose x,y,z=0 and are not equal to 1 and log x+log y+log z=0. Find the value of (1)/(x^(log y))+(1)/(log z)quad (1)/(y^(log z))+(1)/(log x)quad (1)/(z^(log x))+(1)/(log y)

Find the value of (yz)^(log y - log z) xx (zx)^(log z - log x) xx (xy)^(log x - log y) .

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

prove that x^(log y-log z)*y^(log z-log x)*z^(log x-log y)=1