Home
Class 10
MATHS
If p(n)=n(n+1)(n+2) then highest common ...

If `p(n)=n(n+1)(n+2)` then highest common factor of p(n), for different values of mn where n is any ntural number, is __________

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the statement '' p(n):9^n-1 is a multiple of 8''. Where n is a natural number. Is p(1) true?

P(n):11^(n+2)+1^(2n+1) where n is a positive integer If P(n) = 14642, then the value of n is -

If p(n)=(n-2)(n-1)n(n+1)n(n+2) , then greatest number which divides p(n)for all n in N is ___________

Given that P(n, r)=n(n-1)(n-2) ….to r factors What are the values of P(n, 4) and P(n, 2)?

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, then find the value of n.

Write the common difference of an A.P. the sum of whose first \ \ n terms is P/2n^2+Q n