Home
Class 12
cos^(-1)x+sin^(-1)((1)/(2)x)=(pi)/(6)...

cos^(-1)x+sin^(-1)((1)/(2)x)=(pi)/(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x, cos^(-1)x +sin^(-1)((x)/(2)) =(pi)/(6) .

Solve for x, cos^(-1) x + sin^(-1)((x)/(2))=(pi)/(6) .

If cos ^(-1) x+sin ^(-1) (x)/(2)=(pi)/(6) then x=

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

Solve: "cos"^(-1) x +"sin"^(-1) x/2= pi/6

cos ^ (- 1) x + sin ^ (- 1) ((x) / (2)) = (pi) / (6)

Solve the equation sqrt(|sin^(-1)|cos x||+|cos^(-1)|sin x||)=sin^(-1)|cos x|-cos^(-1)|sin x|,(-pi)/(2)<=x<=(pi)/(2)

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)