Home
Class 12
" If "cos theta=(-1)/(2)" and "0^(@)<the...

" If "cos theta=(-1)/(2)" and "0^(@)

Promotional Banner

Similar Questions

Explore conceptually related problems

Fill in the blanks : tan theta=sqrt(3), cos theta= -(1)/(2) and 0^(@) lt theta lt 360^(@) , then theta= _______________ .

If (3sin2theta)/(1-cos2theta)=1/2 and 0^(@)letheta180^(@) , then theta =

One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the interval

One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the interval

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

Find the values of theta betwen 0^(@) and 180^(@) satisying the equation cos6 theta+cos4 theta+cos2 theta+1=0

if A={theta: cos theta gt -(1)/(2),0 le theta le pi }and B={theta: sin thetagt(1)/(2) ,(pi)/(3) lt theta le pi} then

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1