Home
Class 12
MATHS
" If "n" is a positive integer,prove tha...

" If "n" is a positive integer,prove that "(1+i)^(-n)+(1-i)^(n-)=2^(1+4)cos(n pi)

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

If n is a positive integer, then (1+i)^(n)+(1-i)^(n)=

If n be a positive integer, then prove that (1+i)^n+(1-i)^n=2^(n/2+1)."cos"((npi)/4)

If n is a positive integer, then (1+i)^n+(1-i)^n=

A : (1+i)^(6)+(1-i)^(6)=0 R : If n is a positive integer then (1+i)^(n)+(1-i)^(n)=2^((n//2)+1).cos""(npi)/(4)

If n is be a positive integer,then (1+i)^(n)+(1-i)^(n)=2^(k)cos((n pi)/(4)), where k is equal to

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

If n is a positive integer,then (1+i)^(n)+(1-1)^(n) is equal to