Home
Class 12
MATHS
" If "F(x)=[[cos x,-sin x,0],[sin x,cos ...

" If "F(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]]" and "G(y)=[[cos y,0,sin y],[0,1,0],[-sin y,0,cos y]]" then "[F(x)G(y)]" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x) = [(cos x, - sin x, 0),(sin x, cos x, 0),(0,0,1)] and G(y) = [(cos y, 0, sin y),(0,1,0),(-sin y, 0, cos y)] then [F(x) G(y)]^(-1) is equal to a) F (-x) G(-y) b) G(-y) F(-x) c) F(x^(-1))G(y^(-1)) d) G(y^(-1))F(x^(-1))

If A= [[cos x,sin x,0],[-sin x,cos x,0],[0,0,1]]=f(x) then A^-1=

If f(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]] , show that f(x).f(y)=f(x+y)

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

If F (x) = [[cos x,-sin x,0],[sin x, cos x, 0],[0,0,1], then show that F(x) F(y)= F (x+y).