Home
Class 12
MATHS
" of "A=[[a*b],[ba]]" and "A^(2)=[[alpha...

" of "A=[[a*b],[ba]]" and "A^(2)=[[alpha,beta],[beta,alpha]]" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)] then

If A=[(a,b),(b,a)]and A^(2)=[(alpha,beta),(beta,alpha)] , then -

If A=[(a,b),(b,a)] and A^2=[(alpha, beta),(beta, alpha)] then (A) alpha=a^2+b^2, beta=ab (B) alpha=a^2+b^2, beta=2ab (C) alpha=a^2+b^2, beta=a^2-b^2 (D) alpha=2ab, beta=a^2+b^2

If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] then

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .