Home
Class 12
MATHS
(dy)/(dx)=sec(x-y)...

(dy)/(dx)=sec(x-y)

Promotional Banner

Similar Questions

Explore conceptually related problems

x+y(dy)/(dx)=sec(x^(2)+y^(2)), where x^(2)+y^(2)=u

x + y (dy)/(dx) = sec(x^(2) +y^(2)) " when " x =y =0

Solution of the differential equation x+y(dy)/(dx)=sec(x^(2)+y^(2)) is

Solve the different equation : x+y(dy)/(dx)=sec(x^(2)+y^(2)) . Also find the particular solution if x=y=0.

y=sqrt(tan x+sqrt(tan x+sqrt(tan x+rarr oo))) prove that (dy)/(dx)=(sec^(2)x)/(2y-1)

Show that (dy)/(dx)=sec x . If y=(log)sqrt((1+sinx)/(1-sinx))

if y(x) is satisfy the differential equation (dy)/(dx)=(tan x-y)sec^(2)x and y(0)=0. Then y=(-(pi)/(4)) is equal to